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Abstract 

 
This paper investigates the ordering of the polyhedra that comprise the periodic polyhedral 

honeycombs, by considering how pairs of polyhedra regularly combine or mate, proximally or distally, 

along 1, 2 and 3 axes of reference cubic and tetrahedral lattices - first for pairs of Great Enablers 

(!"#), the positive and negative tetrahedra and truncated tetrahedra; then for pairs of !"# and the 

eight Primary Polytopes (!!"); and then for pairs of !!". The three types of mating, !":!", !":!! 

and !!:!!, correlate with the three symmetry groups {2,3,3|2,3,3}, {2,3,3|2,3,4} and {2,3,4|2,3,4}, 
respectively, of the arrays; and these matings typically occur in pairs, which display a one-to-one 

correspondence with the possible periodic honeycombs. I formally differentiate the !!" into two 

groups of four, which lays the groundwork for a proposed new order of the honeycombs. 
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1 Introduction: Ordering the Primary Polytopes 
Part I of this series [1], following on from my earlier research with the polyhedra [2, 3], 

identified four Great Enablers i.e. !": !!/!,!!/! = {!!!,!!,!!,!!} ; eight Primary 

Polytopes, including the 0-D vertex !" i.e. !!: {!!",!", !",!",!",!",!",!"!}; and three 

Neutral Elements, considered in a restricted sense, where they develop as 3-D polyhedra, as 

!"!"# = {!!",!",!"!}; or in a complete sense, as secondary Neutral Elements of 0-D, 1-D, 

2-D or 3-D polytopes !"!"#: {!!", !", !", !", !",!",!"!}. That provided an overview of the 

honeycombs they form. In this paper, I seek to discern a natural order among the various 

polytopes, according to how they relate to one another by their ability to meet along relevant 

axes; and in relation to the periodic structure of the honeycombs. How do !"# relate one to 

another; how do they relate to !!"; and how do !!" relate one to another sans the !"#? 

Section 2 discusses axial mating of polytopes along 1, 2 and 3 axes of reference cubic 

and tetrahedral lattices. Section 3 investigates !":!"  mating, yielding the {2,3,3|2,3,3} 
honeycomb. Section 4 explores !":!!  mating and the four {2,3,3|2,3,4}  honeycombs. 

Section 5 considers !!:!!  mating, the ten {2,3,4|2,3,4}  honeycombs, and formally 

differentiates two groups of four !!". I then propose further research on a formal model. 



2 Axial Relationships of Pairs of Polytopes 
As with the reference cubic and tetrahedral lattices of the honeycombs, individual !! are 

situated within an orthogonal reference system. Their relationships along the XYZ axes, 

diagonal axes, and long diagonal axes of the cube and cubic lattice - along their 1, 2, 3 

axes - can be determined on the basis of whether or not they are compatible: can they mate 

together, at either a vertex, a transverse (or possibly axial) edge, or an axial (or possibly 

transverse) face? This mating may be proximal, where they make actual contact (vertex, edge 

or face); or distal, i.e. through a secondary neutral intermediary element (which might be an 

axial edge, neutral face, or neutral polygon (a prism)). !" and !" do not mate (square-to-

vertex) along a 1 axis, nor (edge-to-vertex) along a 2 axis; but do (vertex-to-vertex) along 

a 3! axis. !" and !" do not mate (rotated square-to-vertex) along a 1 axis, nor (hexagon-

to-triangle) along a 3 axis; but do so (diagonal transverse edge-to-edge) along a 2! axis. 

 

3 Mating of !":!" pairs with one another 
First, the !"# differ from the !!" and !"#, in that they only develop {2,3,3} symmetry on 

the 1, and on alternating ! and ! tetrahedral 3 axes. Please note that all the figures and 

tables of this paper are shown at http://rmeurant.com/its/hn2.html. Without loss of generality, 

I define positive and negative !" to be as in Fig. 1; and the positive and negative !" to be 

those developed from their respective solid. Table 1 clearly shows that in these matrices, 

!":!" axial matings always occur in pairs, e.g. 1: !!: {!!,!!}; 3!
! : !!: {!!,!!}; and 

we shall see that this applies in general. 

In the case of the !"#, the 2 diagonal edge elements of a polyhedron on each 1 axis 

alternate in orientation from top/side to bottom/opposite side; while the facial elements on 

each pair of coaxial ! and ! 3 axes change between triangles and hexagons, both of which 

have an associated orientation. This orientation is obvious in the case of the triangles (up- or 

down-ward pointing); in the case of the hexagons it is indicated in notation by the appendage 

of an extended triangle; for vertices, a small line.  

Therefore, the potential proper relations of !" to !" are quite highly constrained. On the 

1 axes, a !" can meet with one of its opposite sign, or with the other !" of opposite sign; 

but it cannot properly meet with either !" of its own sign. On the ! and ! 3 axes, a !" can 

only meet with one of its opposite sign, or with the other !" as the same sign as itself; but it 

cannot properly meet with itself, or with the other !" of the opposite sign. Figure 2 (again, at 

http://rmeurant.com/its/hn2.html ) shows builds on each of the !"#. 



These constraints are met in the solitary {2,3,3|2,3,3} honeycomb, which I describe in Part I 

as a four-way alternation, or mix-and-match. This gives four permutations, according to 

which !" associates with which reference tetrahedral lattice (refer Fig. 2), i.e.: 
!! !!
!! !! , !! !!

!! !! , !! !!
!! !! , !! !!

!! !! . 
 

4 Axial Relationships of !":!! pairs 

Now consider the potential relations between !"# and !!". On 1 axes, !"# only develop 

transverse diagonal edges, which no !! does (for !" and !", the transverse edge is on the 

2 axis, and the 1 axis element of the !" is the rotated square, which is merely bounded by 

non-axial diagonal edges). The !"# do not develop symmetry on 2 axes; so we are only 

concerned with how !"# and !!" relate on 3 axes. 

Again, the potential matings of polytopes are evidently constrained. On the ! and ! 3 

axes, !" only dance with !"# or !"#, by vertex; or !"# or !"#, by downward pointing 

triangle. !" dance only with !"# and !"#, by upward pointing triangle; or with !"# and 

!"#, by hexagon. Each !" can dance with one set of four of the !!": 

!:!{!!",!"; !",!"!} !:!{!!",!";!",!"!} 
Tables 2 and 3 show the pairings, and arrays. Note the arrowed expansion sequences. 

These pairings are identical to those in Table 2 above for the 3!!! axes, and indeed 

correlate with the possible 2,3,3|2,3,4  arrays shown in Table 3, namely: 

 !
! !"

!" !! , !
! !"
!" !! , !

! !"
!" !! , and !

! !"
!" !! , together with their permutations. 

 

5 Axial Relationships of !!:!! pairs 

By a similar procedure, I compare pairs of !! along the 1, 2, 3 axes. Their relationships 

can be determined on the basis of whether they are compatible or not, that is, whether they 

can mate together, at either a vertex, a (transverse or occasionally axial) edge, or an (axial or 

occasionally transverse) face. In the case of !!:!!, i.e. {2,3,4|2,3,4} symmetry arrays, this 

can be proximal, where they make actual contact (vertex, edge or face); but in some cases it 

can also be distal, through a secondary neutral intermediary (which could be an axial edge, 

neutral polygonal face, or neutral polyhedron - a prism).  

This reveals a striking fact, and confirms the earlier behavior for the !":!" and !":!! 

matings; in each axial case, polytope matings - in this case !!:!! - form natural pairs, and 

these differ for each axis, with further complexity developing on the 3 axes, as in Fig. 3. 



The pairs are:       1!!"#$% ∶ {!(!",!"), (!", !"), (!",!"), (!",!")!} 
2!!"#$% ∶ !(!", !"), (!",!"), (!",!"), (!",!")!  

3!!"#$– !"#$"%&'("!!"#$% ∶ ! !",!" , (!",!")!  

= {!!":!",!":!",!":!",!":!",!":!",!":!",!":!",!":!"!} 
3!!"!– !"#$"%&'("!!"#$% ∶ {!!":!",!":!", !":!", !":!"!} 
= ! {!!": !", !" ,!": !",!" ,!": (!",!"), !": (!",!")!} 

In Table 6, each pair correlates one-to-one with its corresponding {2,3,4|2,3,4} array. 

In the case of 1 and 2 axes, each PP is self-reflective, so it mates with itself, as well as 

with just one other, its pair; but in the case of the 3 axes, note that four of the !!" are self-

reflective, so each can mate with itself, while it can also mate with one other. But the other 

four !!" have triangular faces, which may alternate in orientation (point up or down); in 

these cases each !! cannot mate with itself, as the direction of apex flips between upper and 

lower. So for these four, in square array, each mates with its two neighbors, but not with its 

opposite, as in Fig. 3. In 3 matrices, common mating conditions, situated in overlapping 

squares, accord with the expansion/contraction sequences of arrays discussed in Part 1. 

 

6 Conclusion 
This paper has considered how !":!", !":!!, and !!:!! pairs can combine or mate with 

one another, proximally or distally, along 1, 2, or 3 axes, and how this relates to the 

honeycombs. The matings are highly constrained. !":!" matings correlate with the singular 

{2,3,3|2,3,3} array; !":!! matings correlate with the four {2,3,3|2,3,4} arrays; and !!:!! 

matings correlate with the ten {2,3,4|2,3,4} arrays. In all cases, matings occur in pairs, and 

these pairs vary by axis, and by symmetry group; for any one symmetry group and axis, a 

constituent polyhedron pairs with just two others, and that association pattern is unique to the 

symmetry group and axis. In the case of the !!:!! matings of the {2,3,4|2,3,4} symmetries, 

one of these will be with itself, except for 3 axis matings, which differentiate the !!" into 

two groups of four, which can be depicted in two square arrangements. !!:!! pairings of the 

first group behave in a similar manner to !":!" and !":!! pairings, with !!" pairing with 

themselves and with their opposites; conversely, those of the second group do not; instead, 

each !! pairs with its two neighbors, but not with itself or its opposite. Furthermore, for the 

!":!!!and !!:!! pairings, the expansion/contraction sequences discussed in Part I are 

evident in the 3 matrices; more particularly, for the !!:!! pairings the sequences are 

evident as overlapping squares in Table 4 (lower left) and Table 6. 



We therefore move beyond mere recognition of sets of !"# and !!", to an appreciation of a 

profound inner order that relates the individual elements, according to their potential for 

mating properly with one another, and according to the proper honeycombs that they form. 

This respects, but seeks to surpass, prior efforts to describe their overall structure [5, 6]. The 

challenge then is to evince an adequate formal representation of that profound harmony, 

which is the new order that this series of papers pursues, and which the third paper in this 

series will address.  

 
Figures and Tables 

For reasons of limited space, these are all provided at http://rmeurant.com/its/hn2.html .  
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