
INFORMATION  ISSN 1343-4500 eISSN 1344-8994 
Volume 28. Number 1, pp.5-21  ©2025 International Information Institute 
 

 
 

- 5 - 

Polytope Typology A: The separation of facial polytopes in the morphology 
of the regular and semi-regular polyhedra and tessellations 

 
Robert C. Meurant 

 
Director, Institute of Traditional Studies; Adjunct Professor, Seoul National University PG College of Eng.; 

Exec. Director, Research and Education, Harrisco Enco • rmeurant@gmail.com • http://www.rmeurant.com/its/ 
 

Abstract 
Inspired by Critchlow [1], and Grünbaum and Shephard [2], previous work has proposed an integral 2.5D 

cubic schema of the regular and semi-regular polyhedra and polygonal tessellations of the plane for each class 
of symmetry. This schema is differentiated into an upper and lower layer of 4 polytopes each, and characterized 
by corresponding pairs of upper and lower polytopes [3]. The motif of paired two-step sequences of first 
alternating separation and morphological transformation of faces, and second morphological transformation and 
separation of faces is explored, which in 2D consideration of the 2.5D schema are disposed about the vertical 
axis, as characterized by the correspondence between the PPs of the lower and upper squares (rhombi). 

Developing earlier sustained research [3−11], this paper addresses a deeper typology of morphological 
transformation of the primary polytopes, involving the separation of one gendered set of the negative (–ve), 
neutral (ntrl), or positive (+ve) facial polytopes along the Y, Z, and X axes of the cubic schema. While one set of 
faces separates, the other two sets morph or project through null→regular or quasi-regular→double facial levels 
(0→α|β→2) of the rhombic schema or its reflection. Each facial set only separates once, faces separating by 
d=0→1. The cubic schema exhibits significant three-fold symmetry by gender. The separation of faces schema 
adequately describes the morphology of the three classes of regular and semi-regular polyhedra of {2,3,3}, 
{2,3,4}, and {2,3,5} symmetry, and the two classes of polygonal tessellations of {2,3,6} and {2,4,4} symmetry. 
 
Key words: morphology, polyhedra, separation of faces, tessellations  
 
1.   Class II and generic pairing of polyhedra by the separation of faces  

Figure 1 of the 2.5D schema shows that the pairings of polyhedra within any one class can be 
characterized by the separation of one set of the negative, neutral, or positive surface polytopes on the 
(left to right) Y, Z, or X axes, respectively. Three significant kinds of pairings of 𝑃𝑃s are evident in 
the 2.5D schema, one for each orthogonal axis. These are described for Class II of {2,3,4} symmetry, 
which is characterized by the −ve, neutral, and +ve axes of the class, and thus of each of its individual 
polytopes, being the √1, √2, and √3 (100, 110, 111) axes, respectively, of the cube.  

In this class of 3D polyhedra, the +ve and −ve polar polytopes assume different (dual) forms; this 
contrasts with Class I also of 3D polyhedra, in which the two polar polytopes take the same 
tetrahedral form, though in alternative orientation, or Class V of 2D polygons, in which both polar 
polytopes assume the same form of the square, but in different location. The symmetry axes in the 
other classes are not in general orthogonal; meanwhile, Class II precisely consists of the 𝑃𝑃s of the 
Class III honeycombs. corresponding to the primary components of the Class III honeycomb periodic 
all-space-filling arrays. Later comparison of Classes II and IV illustrates the differences between 3D 
polyhedral and 2D polygonal form, while considering classes with different polar polytopes, as 
opposed to having the same, though reoriented (3D) or relocated (2D) form. The beautiful integrity of 
interrelationship is clearly revealed in Fig. 1: 
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Fig. 1: Pairings of the Class II polyhedra according to −ve (left), neutral (upper), or +ve (right) faces, 
which separate from adjoining (sharing a 𝑉 or 𝐸) to adjacent by distance unit 1 = edge length. 𝐶𝐵 and 
𝑂𝐻  are considered the −ve and +ve polar polytopes, respectively, with facial 𝑃𝑇s shown as −ve 
(cyan) and +ve (magenta), respectively, while neutral polytopes are shown in yellow, or as thick black 
edge. 

Table I. Separating 𝑃𝑃 pairs for Class II and their source and goal polytopes. 

 Negative   Neutral   Positive  
Separating 
facial 𝑃𝑇s 

Source 
polytope 

Goal 
polytope 

Separating 
facial 𝑃𝑇s 

Source 
polytope 

Goal 
polytope 

Separating 
facial 𝑃𝑇s 

Source 
polytope 

Goal 
polytope 

𝑉! 𝑉𝑃" 𝑂𝐻 𝑉# 𝑉𝑃" 𝐶𝑂 𝑉$ 𝑉𝑃" 𝐶𝐵 
𝑆𝑄! 𝐶𝐵 𝑆𝑅𝐶𝑂 𝐸%# 𝑂𝐻 𝑇𝑂 𝑇𝑅$ 𝑂𝐻 𝑆𝑅𝐶𝑂 
𝑅𝑆! 𝐶𝑂 𝑇𝑂 𝐸&

# 𝐶𝐵 𝑇𝐶 𝑅𝑇$ 𝐶𝑂 𝑇𝐶 
𝑂𝐺! 𝑇𝐶 𝐺𝑅𝐶𝑂 𝑆𝑄# 𝑆𝑅𝐶𝑂 𝐺𝑅𝐶𝑂 𝐻𝑋$ 𝑇𝑂 𝐺𝑅𝐶𝑂 

 

N.B. This paper modifies my previous conventions: Vertex 𝑉𝑇	 →	 𝑉; neutral vertex 𝑁𝑉	 →	 𝑉0; edge 𝐸𝐺	
→	 𝐸, neutral edge 𝑁𝐸	→	 𝐸0; neutral square 𝑁𝑆	→	 𝑆𝑄0; Facial polytope →	𝐹; on-axis 0D 𝑉0 (the 1-gon, 
of 1 𝐸 and 1 𝑉`) and 1D 𝐸0 (the 2-gon, of 2 𝐸 and 2 𝑉0), and 2D polygons (𝑇𝑅, 𝐻𝑋, 𝑆𝑄, …), are 
considered 𝐹 (Facial 𝑃𝑇s; kindly refer to Nomenclature at end of paper). 
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The Y-axis of the schema (rising leftwards), shows the separation of negative faces (cyan; lower 
left), as adjoining (coincident) 𝑉! s of the 𝑉𝑃  separate to adjacent 𝑉! s of the 𝑂𝐻  (its nodes); 
adjoining 𝑆𝑄!s of the 𝐶𝐵 separate to adjacent 𝑆𝑄!s of the 𝑆𝑅𝐶𝑂; adjoining 𝑅𝑆!s of the 𝐶𝑂 separate 
to adjacent 𝑅𝑆!s of the 𝑇𝑂; and adjoining 𝑂𝐺!s of the 𝑇𝐶 separate to adjacent 𝑂𝐺!s of the 𝐺𝑅𝐶𝑂. In 
each case, adjoining pairs of negative polytopes of a 𝑃𝑃 that share a 𝑉# or 𝐸# separate by edge length 
unit distance 1 to become adjacent negative polytopes of its 𝑃𝑃 pair. 

The Z-axis of the schema (rising vertically) shows the separation of neutral faces (yellow; upper), 
as adjoining (coincident) 𝑉#s of the 𝑉𝑃 separate to adjacent 𝑉#s of the 𝐶𝑂 (its nodes); adjoining 𝐸#s 
of the 𝑂𝐻 separate to adjacent 𝐸#s of the 𝑇𝑂; adjoining 𝐸#s of the 𝐶𝐵 separate to adjacent 𝐸#s of the 
𝑇𝐶; and adjoining 𝑆𝑄#s of the 𝑆𝑅𝐶𝑂 separate to adjacent 𝑆𝑄#s of the 𝐺𝑅𝐶𝑂. In each case, adjoining 
pairs of neutral surface polytopes of a 𝑃𝑃, sharing a 𝑉 or 𝐸 that need not be +/0/−ve, e.g., of 𝑆𝑅𝐶𝑂, 
separate by d=1 to become adjacent neutral 𝐹s of its 𝑃𝑃 pair. 

The X-axis of the schema (rising rightwards) shows the separation of positive faces (magenta; 
lower right), as adjoining (coincident) 𝑉$s of the 𝑉𝑃 separate to adjacent 𝑉$s of the 𝐶𝐵 (its nodes); 
adjoining 𝑇𝑅$s of the 𝑂𝐻 separate to adjacent 𝑇𝑅$s of the 𝑆𝑅𝐶𝑂; adjoining 𝑅𝑇$s of the 𝐶𝑂 separate 
to adjacent 𝑅𝑇$s of the 𝑇𝐶; and adjoining 𝐻𝑋$s of the 𝑇𝑂 separate to adjacent 𝐻𝑋$s of the 𝐺𝑅𝐶𝑂. 
In each case, adjoining pairs of positive polytopes of a 𝑃𝑃, sharing a 𝑉# or 𝐸#, separate by distance 1 
to become adjacent positive polytopes of its 𝑃𝑃 pair. 

Figure 2 combines these various correspondences by the separation of facial polytopes by unit 
distance into the one illustration (Fig. 2), with the exemplary Class II shown at left and middle, and all 
classes (generic) at right. In each case of facial separation, adjoining pairs of polytopes of a 𝑃𝑃 (d=0) 
separate by unit distance d=1 (= length of polytope side) to become adjacent polytopes of its 𝑃𝑃 pair: 

 
Fig. 2: Class II (left and middle), and generic (all classes; right) paired correspondences of PPs. 

 
2.   The Class II associated evolution of non-separating morphing faces  

As my earlier papers have partially explored [3, 4] and developing the description in the previous 
section, as one set of faces separates, the other 2 sets of faces evolve, doing so consistently according 
to a rhombic schema; refer Fig. 3 and Table III. 

Negative Separations: On the Y-axis of the cubic schema rising leftwards, as the −ve faces (cyan) 
separate, the +ve faces expand, evolving according to the rhombic schema of Fig. 3c from level 0 or 1 
to the next higher level (1 or 2). Meanwhile, the neutral faces project (extrude), evolving to an 
analogous rhombic schema from level 0 or 1 to the next higher level (1 or 2; Fig. 3b). Figure 1 (lower 
left) shows that in Class II, as (lower rhomb) 𝑉!s and 𝑆𝑄!s separate, 𝑉$s expand to 𝑇𝑅$s; while 
(upper rhomb) as 𝑅𝑆!s and 𝑂𝐺!s separate, 𝑅𝑇$s expand to 𝐻𝑋$s, while the 𝑉#s and 𝐸&s of the 
lower and upper rhombs project to 𝐸%s and 𝑆𝑄#s, respectively (Fig. 1, lower left). 

Generic PPs
and their

nomenclature

2.5D Polyhedra
Schema Class II

√1, √2, & √3 negative, neutral,
& positive faces separate by unit
length, PPs pair by Y,Z,X-axes

VP

TP–

PL–

TP+

PL+

SR

GR

QR

Class II of {2,3,4}
symmetry PPs and
their nomenclature
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Class II ntrl 𝑃𝑇s α and β of level 1 (𝐿1) 
are the edges of the +ve 𝑂𝐻 and −ve 𝐶𝐵, 

 

 
 

 

Fig. 3: Rhombic schema of the 
levels of development of the polar 
facial polytopes: 

 
 

 
 

and the corresponding edges of the +ve 
𝑇𝑂 and 𝑇𝐶, respectively. α | β are dual. 

 

 
 

 

(a)–(c) Class II –ve, ntrl, and +ve 
facial polytopes; (d) Generic schema 

of Classes I–V, with levels L0−L2. 

Neutral Separations: On the Z-axis of the cubic schema rising vertically, as the neutral faces 
(yellow) separate, both the +ve and the −ve faces expand, evolving according to the rhombic schema 
from level 0 or 1 to the next higher level (1 or 2; Fig. 3d). In Class II, as the 𝑉#s and 𝐸&

#s separate, 
𝑉$s morph to 𝑅𝑇$s; and as (back left rhomb) 𝐸%#s and 𝑆𝑄#s of the front right rhomb separate, 𝑇𝑅$s 
morph to 𝐻𝑋$s. As the 𝑉#s and 𝐸%#s of the front left rhomb separate, 𝑉!s morph to 𝑅𝑆!s; and as the 
𝐸&
#s and 𝑆𝑄#s of the back right rhomb separate, 𝑆𝑄!s morph to 𝑂𝐺!s (Fig. 1, upper middle). 
Positive Separations: On the X-axis of the schema rising rightwards, as the +ve faces separate, the 

−ve faces expand, evolving according to the rhombic schema from levels 0 or 1 to the next higher 
level (1 or 2; Fig. 3a). Meanwhile, the neutral faces project (extrude), evolving according to the 
analogous rhombic schema from level 0 or 1 to the next higher level (1 or 2; Fig. 3b). In Class II, as 
the 𝑉$s and 𝑇𝑅$s of the lower rhomb separate, 𝑉!s expand to 𝑆𝑄!s; while as the 𝑅𝑇$s and 𝐻𝑋$s of 
the upper rhomb separate, 𝑅𝑆!s expand to 𝑂𝐺!s; meanwhile, the 𝑉#s and 𝐸%#s of the lower and upper 
rhombs extrude to 𝐸&

#s and 𝑆𝑄#s, respectively (Fig. 1, lower right).  

 
Fig. 4: On-axis Class II null, regular and quasi-regular (dashed), and double (frequency) (0, α and β, 2) faces 
from center 𝑉𝑇 (circle) outwards and front to back for (left to right): +ve, ntrl, and −ve axes, where null (0) 
refers to the 0D case; regular (α) to the same orientation face as for the regular 𝑃𝐿s (𝑂𝐻, 𝐶𝐵), and quasi-regular 
(β) as for the quasi-regular 𝑄𝑅 (𝐶𝑂); and double (2) to the 2-frequency face. For neutrals, α and β faces are 
defined as the 2-gon 𝐸#s of the +ve and −ve 𝑃𝐿s 𝑂𝐻 and 𝐶𝐵, respectively. 

The neutral faces (2-gon neutral edges of the 𝑃𝑃) that are generated at the middle Level 1 𝐿1) of 
the facial rhombic schema shown in Fig. 3 are of two kinds of orientations, α and β, depending on 
whether they characterize the +ve or −ve 𝑃𝐿 s (in Class II, 𝑂𝐻  and 𝐶𝐵 ), respectively. This is 
analogous to the central 𝐿1 distinction of the +ve and −ve faces into α | β orientations (Figs. 3b and 4). 
The morphology of this α | β neutral dichotomy analogues that of the two kinds of neutral polyhedra 
of the Class III honeycombs, particularly in the primary and tertiary arrays [5−11], where the neutral 
diverges into complementary pairs. 
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Table II. Generic Schema of the 5 Classes of the Regular and Semi-regular Polyhedra and Tessellations. 

Polytope Symmetry Lower Rhomb Upper Rhomb 
Class {0,+,−} 𝑉𝑃 𝑃$ 𝑃% 𝑆𝑅 𝑄𝑅 𝑇𝑟𝑛𝑐𝑃$ 𝑇𝑟𝑛𝑐𝑃% 𝐺𝑅 

I {2,3,3} 𝑉𝑃& 𝑇𝐻$ 𝑇𝐻% 𝑆𝑅	𝑇𝐻: 𝑇𝐻 𝑇𝐻: 𝑇𝐻 𝑇𝑇$ 𝑇𝑇% 𝐺𝑅	𝑇𝐻: 𝑇𝐻 
II {2,3,4} 𝑉𝑃&& 𝑂𝐻$ 𝐶𝐵% 𝑆𝑅	𝑂𝐻: 𝐶𝐵 𝑂𝐻: 𝐶𝐵 𝑇𝑂$ 𝑇𝐶% 𝐺𝑅	𝑂𝐻: 𝐶𝐵 
III {2,3,5} 𝑉𝑃&&& 𝐼𝐶$ 𝐷𝐶% 𝑆𝑅	𝐼𝐶: 𝐷𝐶 𝐼𝐶: 𝐷𝐶 𝑇𝐼$ 𝑇𝐷% 𝐺𝑅	𝐼𝐶: 𝐷𝐶 
IV {2,3,6} 𝑉𝑃&' 𝑇𝑅$ 𝐻𝑋% 𝑆𝑅	𝑇𝑅:𝐻𝑋 𝑇𝑅:𝐻𝑋 𝑅𝑇$ 𝑅𝐻% 𝐺𝑅	𝑇𝑅:𝐻𝑋 
V {2,4,4} 𝑉𝑃' 𝑆𝑄$ 𝑆𝑄% 𝑆𝑅	𝑆𝑄: 𝑆𝑄 𝑆𝑄: 𝑆𝑄 𝑅𝑆$ 𝑆𝑄% 𝐺𝑅	𝑆𝑄: 𝑆𝑄 

Table III. Class II Separation of one set of (−ve, ntrl, or +ve) facial pairs of 𝑃𝑃s with their associated 
morphological changes of the other two sets of facial polytopes from source to goal (𝑂𝐻: 𝐶𝐵	=	𝐶𝑂). 

Separating 
facial 𝑃𝑇s 

Primary Polytope 
(𝑃𝑃) transition 

Source 
facial 𝑃𝑇s 

Goal 
facial 𝑃𝑇s 

Source 
facial 𝑃𝑇s 

Goal 
facial 𝑃𝑇s 

Negative facial 𝑃𝑇 separation Neutral facial 𝑃𝑇 projection Positive facial 𝑃𝑇 expansion 
𝑉! 𝑉𝑃" → 𝑂𝐻 #𝑉# #𝐸%# #𝑉$ #𝑇𝑅$ 
𝑆𝑄! 𝐶𝐵 → 𝑆𝑅𝐶𝑂 #𝐸&

# #𝑆𝑄# '𝑉$ '𝑇𝑅$ 
𝑅𝑆! 𝐶𝑂 → 𝑇𝑂 '𝑉# '𝐸%# #𝑅𝑇$ #𝐻𝑋$ 
𝑂𝐺! 𝑇𝐶 → 𝐺𝑅𝐶𝑂 '𝐸&

# '𝑆𝑄# '𝑅𝑇$ '𝐻𝑋$ 
Neutral facial 𝑃𝑇 separation Positive facial 𝑃𝑇 expansion Negative facial 𝑃𝑇 expansion 
𝑉# 𝑉𝑃" → 𝐶𝑂 #𝑉$ #𝑅𝑇$ #𝑉! #𝑅𝑆! 
𝐸%# 𝑂𝐻 → 𝑇𝑂 #𝑇𝑅$ #𝐻𝑋$ '𝑉! '𝑅𝑆! 
𝐸&
# 𝐶𝐵 → 𝑇𝐶 '𝑉$ '𝑅𝑇$ #𝑆𝑄! #𝑂𝐺! 

𝑆𝑄# 𝑆𝑅𝐶𝑂 → 𝐺𝑅𝐶𝑂 '𝑇𝑅$ '𝐻𝑋$ '𝑆𝑄! '𝑂𝐺! 
Positive facial 𝑃𝑇 separation Negative facial 𝑃𝑇 expansion Neutral facial 𝑃𝑇 projection 
𝑉$ 𝑉𝑃" → 𝐶𝐵 #𝑉! #𝑆𝑄! #𝑉# #𝐸&

# 
𝑇𝑅$ 𝑂𝐻 → 𝑆𝑅𝐶𝑂 '𝑉! '𝑆𝑄! #𝐸%# #𝑆𝑄# 
𝑅𝑇$ 𝐶𝑂 → 𝑇𝐶 #𝑅𝑆! #𝑂𝐺! '𝑉# '𝐸&

# 
𝐻𝑋$ 𝑇𝑂 → 𝐺𝑅𝐶𝑂 '𝑅𝑆! '𝑂𝐺! '𝐸%# '𝑆𝑄# 

 

3.   Class IV pairing of polygonal arrays by the separation of faces  
Class IV of the regular and semiregular polytopes comprises the Tri−Hex arrays, in which the polar 

𝑃𝑇s are the +ve triangular and −ve hexagonal regular tessellations. Class IV is similarly characterized 
to Class II, even though it differs in dimension, in being of 2D tessellations, rather than 3D polyhedra; 
unlike the other 2D Class V of the 𝑆𝑄−𝑆𝑄 cluster of arrays, its polar elements assume different 
geometric form (Fig. 5, upper right). 

Negative Separations: On the Y-axis of the cubic schema rising leftwards, as the 𝑉!s and 𝐻𝑋!s of 
the lower rhomb separate, 𝑉$s expand to 𝑇𝑅$s; while as the 𝑅𝐻!s and 𝐷𝐷!s of the upper rhomb 
separate, 𝑅𝑇$s expand to 𝐻𝑋$s; and meanwhile, the 𝑉#s and 𝐸&s of the lower and upper rhombs 
project to 𝐸%s and 𝑆𝑄#s, respectively (Fig. 5, lower left). 

Neutral Separations: On the Z-axis of the cubic schema rising vertically, as the 𝑉#s and 𝐸&
#s of the 

front right rhomb separate, 𝑉$s morph to 𝑅𝑇$s; as the 𝐸%#s and 𝑆𝑄#s of the back left rhomb separate, 
𝑇𝑅$s morph to 𝐻𝑋$s. As the 𝑉#s and 𝐸%#s of the front left rhomb separate, 𝑉!s morph to 𝑅𝐻!s; and 
as the 𝐸&

#s and 𝑆𝑄#s of the upper right rhomb separate, 𝐻𝑋!s morph to 𝐷𝐷!s (Fig. 5 upper mid-left).  
Positive Separations: On the X-axis of the cubic schema rising rightwards, as the 𝑉$s and 𝑇𝑅$s of 
the lower rhomb separate, 𝑉!s expand to 𝐻𝑋!s; while as the 𝑅𝑇$s and 𝐻𝑋$s of the upper rhomb 
separate, 𝑅𝐻!s expand to 𝐷𝐷!s; meanwhile, the 𝑉#s and 𝐸%#s of the lower and upper rhombs extrude 
to 𝐸βs and 𝑆𝑄#s, respectively (Fig. 5, lower mid-right). 



ROBERT C. MEURANT 

 - 10 - 

 
U

pp
er

 R
ho

m
bu

s: 
G

re
at

 R
ho

m
bi

c T
ri−

H
ex

 A
rra

y 
(to

p)
  

Tr
un

ca
te

d 
Tr

ia
ng

ul
ar

 A
rra

y 
an

d 
 

Tr
un

ca
te

d 
H

ex
ag

on
al

 A
rra

y 
(u

pp
er

 le
ft 

an
d 

rig
ht

) 
Q

ua
si-

Re
gu

la
r T

riH
ex

 a
rra

y 
(lo

w
er

) 

Lo
w

er
 R

ho
m

bu
s: 

Sm
al

l R
ho

m
bi

c 
Tr

i−
H

ex
 a

rra
y 

(u
pp

er
) 

Tr
ia

ng
ul

ar
 A

rra
y 

an
d 

H
ex

ag
on

al
 A

rra
y 

(lo
w

er
 le

ft 
an

d 
rig

ht
) 

Ve
rti

ci
al

 A
rra

y 
(b

ot
to

m
). 

Fi
g.

 5
: 2

.5
D

 S
ch

em
a 

of
 fa

ce
s: 

Pa
iri

ng
 o

f t
he

 C
la

ss
 IV

 p
ol

yh
ed

ra
  

ac
co

rd
in

g 
to

 th
ei

r −
ve

 (l
ow

er
 le

ft)
, 

nt
rl 

(u
pp

er
 le

ft)
, a

nd
 +

ve
 (l

ow
er

 ri
gh

t),
 

fa
ce

s;
 w

ith
 (u

pp
er

 ri
gh

t) 
th

ei
r c

om
bi

ne
d 

po
si

tiv
e,

 n
eu

tra
l, 

an
d 

ne
ga

tiv
e 

fa
ce

s. 

In
 th

is
 c

la
ss

, 
th

e 
he

xa
go

na
l a

nd
 

tri
an

gu
la

r a
rra

ys
 a

re
 

co
ns

id
er

ed
 th

e 
−v

e 
an

d 
+v

e 
po

la
r p

ol
yt

op
es

, r
es

pe
ct

iv
el

y,
 

th
ei

r f
ac

ia
l a

xe
s b

ei
ng

 
th

e 
−v

e 
(c

ya
n)

 a
nd

 
+v

e 
(m

ag
en

ta
) a

xe
s. 



POLYTOPE TYPOLOGY A : THE SEPARATION OF FACIAL POLYTOPES IN THE MORPHOLOGY 
 

 - 11 - 

4.   The unfolding of apparent three-fold symmetry 
In previous work [3], I exploited the 2D characteristics of the 2.5D schema, integrating the vertical 

dimension, and associated separation of 𝑃𝑃  elements into +ve (left; 𝑂𝐻−𝑇𝑂 ), neutral (middle; 
𝑉𝑃−𝐶𝑂−𝑆𝑅𝐶𝑂−𝐺𝑅𝐶𝑂), and −ve (right; 𝐶𝐵−𝑇𝐶). I partially exploited the 3D characteristics of the 
schema, differentiating the schema primarily into lower (𝑉𝑃, 𝑂𝐻, 𝐶𝐵, 𝑆𝑅𝐶𝑂) and upper (𝐶𝑂, 𝑇𝑂, 𝑇𝐶, 
𝐺𝑅𝐶𝑂) rhombi (top and bottom faces of the cubic schema). Generically, this represents separation 
into positive 𝑇𝑃$−𝑃𝐿$, neutral 𝑉𝑃−𝑄𝑅−𝑆𝑅−𝐺𝑅, and negative 𝑃𝐿!−𝑇𝑃!, with lower (𝑉𝑃, 𝑃𝐿$, 𝑃𝐿!, 
𝑆𝑅) and upper ( 𝑄𝑅, 𝑇𝑃$, 𝑇𝑃!, 𝐺𝑅) rhombi. 

This paper develops these 3D characteristics more fully, considering the √3 long diagonal 𝑉𝑃—
𝐺𝑅𝐶𝑂 to be the primary axis, situated vertically, so the cubic schema can be regarded as a cube 
balanced on one vertex (𝑉𝑃 ) (Fig. 6, left), hence emphasizing its 3-fold symmetry: rather than 
considering +ve and −ve as polar opposites with neutral as central mediating case, the three gender 
cases of +ve, neutral, and −ve are allowed a degree of equal status, the main distinction being that the 
neutral faces (2-gon neutral edges of the 𝑃𝑃) that are generated at Level 1 of the facial hierarchy are, 
as before, of two orientations, α and β. 

Contemplating the cubic schema in a true 3D multi-axial (microgravitational) sense, any 𝑃𝑃 enjoys 
various kinds of pairing relationship with 3 adjoining 𝑃𝑃s, 3 distant 𝑃𝑃s, and 1 opposite 𝑃𝑃; e.g., in 
Class II, 𝑂𝐻—𝑇𝐶, i.e., 𝑂𝐻; 𝑆𝑅, 𝑉𝑃, 𝑇𝑂; 𝐶𝑂, 𝐺𝑅, 𝐶𝐵; 𝑇𝐶. The most significant of these axial pairs is 
the primary 𝑉𝑃—𝐺𝑅𝐶𝑂 √3 axis, as the 𝑉𝑃 progresses step-wise through its 3 neighboring 𝑃𝑃s, 𝑂𝐻, 
𝐶𝑂, 𝐶𝐵; its 3 more distant relatives, 𝑇𝐶, 𝑆𝑅𝐶𝑂, 𝑇𝑂; to culminate in its opposite, 𝐺𝑅𝐶𝑂. 
(Reading from bottom to top): 

3: 𝐺𝑅𝐶𝑂. 
2: 𝑇𝐶/𝑆𝑅𝐶𝑂/𝑇𝑂, ↑ to 
1: 𝑂𝐻/𝐶𝑂/𝐶𝐵, ↑ to 
0: 𝑉𝑃, ↑ to 

 
Fig. 6: (left) Class II rhombic 
bi-hierarchical network of 𝑃𝑃s 
(view +ve axis); (right) Class II 
VP—GRCO principal √3 axis. 
Both sub-figures show the stepped 
vertical progression of 𝑃𝑃 pairs. 

  
Thus (restoring gravity), considering the 𝐺𝑅𝐶𝑂—𝑉𝑃 diagonal as the unique vertical primary axis to 
the schema, each 𝑃𝑃  provides a locus of realization and/or generation of its neighboring 𝑃𝑃 s, 
allowing the 8 𝑃𝑃s of each class to then be ranked according to their pattern of relationship to their 
adjoining 𝑃𝑃s. 𝑉𝑃 is unique; in step 1 it generates 3 equivalent 𝑃𝑃s: 𝑉𝑃 → 𝑂𝐻, 𝐶𝑂, and 𝐶𝐵. In step 
2, 𝑂𝐻, 𝐶𝑂, and 𝐶𝐵 each generate two 𝑃𝑃s, i.e., 𝑂𝐻 → 𝑆𝑅𝐶𝑂 and 𝑇𝑂; 𝐶𝑂 → 𝑇𝑂 and 𝑇𝐶; and 𝐶𝐵 → 
𝑇𝐶 and 𝑆𝑅𝐶𝑂. In step 3, the equivalent 𝑇𝐶, 𝑆𝑅𝐶𝑂, and 𝑇𝑂 each generate the also unique 𝐺𝑅𝐶𝑂: 𝑇𝐶, 
𝑆𝑅𝐶𝑂, and 𝑇𝑂 → 𝐺𝑅𝐶𝑂, to culminate the vertical progression. The constant feature of each step is 
the separation of the faces of one gender (−, 0, +) by unit distance, indicating its driving characteristic. 

The schema therefore displays clear stratification (that of the polar zonahedron [12] of the cube), as 
each 𝑃𝑃  is generated from, and/or develops into, its fellow 𝑃𝑃s. Here, 𝑉𝑇  only generates; while 
𝐺𝑅𝐶𝑂 is only generated. Four strata (𝑆) of elements are thus evident, of 1 3-fold generator, 3 1-
generated and 2 generating; 2 generated and 1 generating; and 1 3-fold generated: 𝑆1: 𝑉𝑃; 𝑆2: 𝑂𝐻, 
𝐶𝑂, and 𝐶𝐵; 𝑆3: 𝑇𝐶, 𝑆𝑅𝐶𝑂, and 𝑇𝑂; and 𝑆4: 𝐺𝑅𝐶𝑂, while the schema morphology exhibits clear 3-
fold order about the principal 𝑉𝑃—𝐺𝑅𝐶𝑂 √3 axis. Each of the 5 Classes I−V of regular and semi-
regular polytopes according to symmetry is thus characterized by a development sheath of sequences 
from 𝑉𝑃 to 𝐺𝑅 of 3-fold nature, with the 𝑃𝑃s of that class disposed in those 4 strata. 

1
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For each of the five classes, any constituent 𝑃𝑃 within that class can be developed by the separation 
of −ve, neutral, or +ve faces from the source 𝑉𝑃 in a sequence of steps, so: 0 step: 𝑉𝑃; 1 step: 𝑃𝐿$, 
𝑄𝑅, 𝑃𝐿!; 2 steps: 𝑇𝑃!, 𝑆𝑅, 𝑇𝑃$; 3 steps: 𝐺𝑅 (Fig. 7b). The variations in steps to realize a particular 
𝑃𝑃  by the process of separation of adjoining surface polytopes separating to adjacent surface 
polytopes by unit distance is therefore: ‘no way’: 𝑉𝑃; one way: 𝑃𝐿$ , 𝑄𝑅 , 𝑃𝐿! ; two ways: 𝑇𝑃! , 
𝑆𝑅𝑄𝑅, 𝑇𝑃$; and six ways: 𝐺𝑅𝑄𝑅. 

 
Fig. 7: The pairing of polytopes by neutral faces and their separation showing the 3-fold order: 

(a) for Class II, (b) Generic, i.e., for all 5 classes of symmetry, and (c) for Class IV. 

For Class II as exemplar, this is 0 step/no way, VPII; 1 step/1 way, 𝑂𝐻, 𝐶𝑂, 𝐶𝐵; 2 steps/2 ways, 𝑇𝐶, 
𝑆𝑅𝐶𝑂, 𝑇𝑂; 3 steps/6 ways, 𝐺𝑅𝐶𝑂 (Fig. 7a). For Class IV as exemplar, this is 0 steps/no way, VPIV; 1 
step/1 way, 𝑇𝑅, 𝑄𝑅	𝑇𝑅:𝐻𝑋, 𝐻𝑋; 2 steps/2 ways, 𝑇𝑟𝑛𝑐𝐻𝑋, 𝑆𝑅	𝑇𝑅:𝐻𝑋, 𝑇𝑟𝑛𝑐𝑇𝑅; 3 steps/6 ways), 
𝐺𝑅	𝑇𝑅:𝐻𝑋 (Fig. 7c). (Alternatively, subduction sequences of the convergence of faces would consist 
of 𝐺𝑅 → (𝑇𝑃$, 𝑆𝑅, 𝑇𝑃!) → (𝑃𝐿$, 𝑄𝑅, 𝑃𝐿!) → 𝑉𝑃). Each family of polytopes therefore demonstrates 
a high degree of order, and should not be considered accidentally related; or within any one class, by 
assuming any one 𝑃𝑃 to be equivalent to the other seven. Rather, they simultaneously crystallize into 
formal existence as regularly varied concretizations of a profound natural spatial order.  

As previously observed, the 3-fold morphology of the 8 𝑃𝑃s in each class is the structure of a polar 
zonahedron, as also evident in the evolution/involution of the 2D polar zonagon schema of from 
above or from below. This polar zonagonal geometry at higher frequency (f = (12, 24, 48, 60…) is 
widely used in traditional Islamic sacred architecture of the dome, in its 3D form and in its 2D surface 
decoration, as explored in part of my PhD [12:pp.9−34], and offers very real advantages to 
construction and decoration (equal subdivision of angle in plan; equal length edges; constant vertical 
gain of edges, so constant slope; corresponding equal vertical stratification of nodes; and nodes lying 
on a rotated sine wave surface about the principal vertical axis). In sacred and traditional architecture, 
the form eloquently symbolizes the geometry of the center, projected into time and space; the cycle of 
manifestation and transformation of a central epiphany emanating from the source, extending to 
maximum realization in the phenomenal; then reflecting, clarifying, and centering, for the 
manifestation to be reabsorbed through the center, to return to the noumenal beyond creation.  

However, the three-fold symmetry of −ve, neutral, and +ve remains in a sense imperfect, as the 
duality of the polyhedra intrudes, indicating that the morphology of the neutral differs in kind from 
that of the polar; a creative tension exists between this characterization and the unfolding of order 
from the wrapping around of a central axis, to reflective planar symmetry about a central vertical axis 
of neutrality, as if the sheath of the schema splits open to uncurl to dispose elements and relationships 
into bilateral symmetry of vertical qualitative differentiation, and horizontal duality/polarity. Hence 
the subtlety of the 2.5D schema that can mediate that creative tension. 
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Table IV. Source to goal progression of 𝑃𝑇s by the generic separation of one set of (−ve, neutral, or +ve) facial 
pairs of 𝑃𝑃s together with the associated morphological changes of the other two sets of facial polytopes (𝐹s). 

Separating 
facial 𝑃𝑇s 

Primary Polytope 
(𝑃𝑃) transition 

Source 
facial 𝑃𝑇s 

Goal 
facial 𝑃𝑇s 

Source 
facial 𝑃𝑇s 

Goal 
facial 𝑃𝑇s 

Negative facial 𝑃𝑇 separation Neutral facial 𝑃𝑇 projection Positive facial 𝑃𝑇 expansion 
𝐹#! 𝑉𝑃 → 𝑃𝐿$ #𝑉## #𝐸%# #𝑉#$ #𝐹%$ 
𝐹%! 𝑃𝐿! → 𝑆𝑅𝑄𝑅 #𝐸&

# #𝐹"# '𝑉#$ '𝐹%$ 
𝐹&
! 𝑄𝑅 → 𝑇𝑃$ '𝑉## '𝐸%# #𝐹&

$ #𝐹"$ 
𝐹"! 𝑇𝑃! → 𝐺𝑅𝑄𝑅 '𝐸&

# '𝐹"# '𝐹&
$ '𝐹"$ 

Neutral facial 𝑃𝑇 separation Positive facial 𝑃𝑇 expansion Negative facial 𝑃𝑇 expansion 
𝐹## 𝑉𝑃 → 𝑄𝑅 #𝑉#$ #𝐹&

$ #𝑉#! #𝐹&
! 

𝐹%# 𝑃𝐿$ → 𝑇𝑃$ #𝐹%$ #𝐹"$ '𝑉#! '𝐹&
! 

𝐹&
# 𝑃𝐿! → 𝑇𝑃! '𝑉#$ '𝐹&

$ #𝐹%! #𝐹"! 
𝐹"# 𝑆𝑅𝑄𝑅 → 𝐺𝑅𝑄𝑅 '𝐹%$ '𝐹"$ '𝐹%! '𝐹"! 

Positive facial 𝑃𝑇 separation Negative facial 𝑃𝑇 expansion Neutral facial 𝑃𝑇 projection 
𝐹#$ 𝑉𝑃 → 𝑃𝐿! #𝑉#! #𝐹%! #𝑉## #𝐸&

# 
𝐹%$ 𝑃𝐿$ → 𝑆𝑅𝑄𝑅 '𝑉#! '𝐹%! #𝐸%# #𝐹"# 
𝐹&
$ 𝑄𝑅 → 𝑇𝑃! #𝐹&

! #𝐹"! '𝑉## '𝐸&
# 

𝐹"$ 𝑇𝑃$ → 𝐺𝑅𝑄𝑅 '𝐹&
! '𝐹"! '𝐸%# '𝐹"# 

These correspondences between classes of the various facial transformations of separation, 
morphing/expansion of the −ve or +ve faces or extrusion/projection of the neutral faces help validate 
the 2.5D schema and the rhombic schema of the evolution of faces, while serving to characterize the 
progressions and interrelationships of the polyhedra and tessellations. 
 

In accord with the rhombic schema of Fig. 3, faces are thus null (level 0), regular or quasi-regular 
(i.e., of the regular or quasi-regular 𝑃𝑇; level 1), or double (level 2); i.e., only ever (0, α or β, or 2): 

 
 

A. Negative faces 
Z- and X-axes: 

Front right: 0→α|β→2 rhomb d=0 
   Back left: 0→α|β→2 rhomb d=1 

Y-axis: Separation of −ve faces 
(bold) d=0 → d=1 

B. Neutral faces 
X- and Y-axes: 

Lower: 0→α|β→2 rhomb d=0 
 Upper: 0→α|β→2 rhomb d=1 

Z-axis: Separation of ntrl faces 
(bold) d=0 → d=1 

C. Positive faces 
Y- and Z-axes: 

  Front left: 0→α|β→2 rhomb d=0 
Back right: 0→α|β→2 rhomb d=1 

X-axis: Separation of +ve faces 
(bold) d=0 → d=1 

 

Fig. 8: Formal transformations for (L to R) −ve, ntrl, and +ve clusters of the faces of Fig. 1 of the cubic schema 
show that the patterns of separation and morphing/extrusion are identical across faces, with −ve | +ve reflective. 
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5.   Integrating the relationships 
The formal structure or structural morphology of the elements of the five classes of regular and 

semiregular polyhedra and tessellations, and the relationships between the elements in any one class, 
thus become clear. The key to this morphology consists of the 2.5D cubic schema together with the 
rhombic schema of the development of faces, the reorientation of the cube on its √3 long vertical 
principal axis of 𝑉𝑃—𝐺𝑅, and recognition of the separation of faces characterizing any one of the 
cubic schema links between polytopes as bundles/sheaths of parallel faces of the cube as zonahedron. 
Either of the other 2 sets of characteristics of the simultaneous morphing or expansion of +ve or −ve 
facial polytopes, and the projection or extrusion of neutral facial polytopes, can then be recognized as 
the other 2 zonahedral bundles of the zonahedral cube, respectively, notwithstanding these are not 
simply equivalent to the neutral case that exploits the primary orthogonal axes of the rhomb, but are 
differentiated into pairs of pairs that exploit the inclined axes/opposite edges of the rhomb, separating 
the d=0 and 1 rhombs. 

In the negative facial case (Fig. 8A), −ve front right cubic schema faces are adjoining d=0, while 
back left are adjacent d=1. On the Z-axis, the pairs of pairs are 2×(0→β) and 2×(α→2), where d=0: 
(00→β0) and (α0→20), and d=1: (01→β1) and (α1→21). On the X-axis, the pairs of pairs are 2×(0→α) 
and 2×(β→2), where d=0: (00→α0) and (β0→20), d=1: (01→α1) and (β1→21).  

In the neutral facial case (Fig. 8B), neutral lower cubic schema faces are adjoining d=0, while 
upper are adjacent d=1. On the X-axis, the pairs of pairs are 2×(0→β) and 2×(α→2), where d=0: 
(00→β0) and (α0→20), and d=1: (01→β1) and (α1→21). On the Y-axis, the pairs of pairs are 2×(0→α) 
and 2×(β→2), where d=0: (00→α0) and (β0→20), d=1: (01→α1) and (β1→21).  

In the positive facial case (Fig. 8C), +ve front left cubic schema faces are adjoining d=0, while 
back right are adjacent d=1. On the Y-axis, the pairs of pairs are 2×(0→α) and 2×(β→2), where d=0: 
(00→α0) and (β0→20), and d=1: (01→α1) and (β1→21). On the Z-axis, the pairs of pairs are 2×(0→β) 
and 2×(α→2), where d=0: (00→β0) and (α0→20), d=1: (01→β1) and (α1→21). 

In each case of −ve, ntrl, and +ve clusters of faces, the separation of faces by gender is represented 
as the Y–, Z–, or X–axis separating rhombic schema of 0→α|β→2 for d=0 → d=1. 

Generically, for any class, and for each case of −ve, neutral, or +ve facial polytope, each constituent 
𝑃𝑃 can be uniquely described in terms of two parameters: 1. The level of facial polytope evolution, 
i.e., (0, α | β, 2), and 2. the separation of facial polytope distance, whether adjoining or adjacent, i.e., 
(0, 1). The 𝑃𝑃s can therefore be tabulated according to their facial evolution and separation: 

Table V. Generic expressions of facial evolution and separation of the constituent 𝑃𝑃s of each class.  

Sep. of faces Negative Neutral Positive 
d 0 α β 2 0 α β 2 0 α β 2 
0 𝑉𝑃 	𝑃𝐿! 𝑄𝑅 	𝑇𝑃! 𝑉𝑃 	𝑃𝐿$ 	𝑃𝐿! 𝑆𝑅 𝑉𝑃 	𝑃𝐿$ 𝑄𝑅 	𝑇𝑃$ 
1 	𝑃𝐿$ 𝑆𝑅 	𝑇𝑃$ 𝐺𝑅 𝑄𝑅 	𝑇𝑃$ 	𝑇𝑃! 𝐺𝑅 	𝑃𝐿! 𝑆𝑅 	𝑇𝑃! 𝐺𝑅 

 

Any specific case: −ve, neutral, or +ve of the facial polytope, in combination with the separation 
(Sep.) of those neighboring facial polytopes of adjoining (d=0) or adjacent (d=1), is sufficient 
information to determine the PP of that class, whether 𝑉𝑃, 𝑃𝐿!/$, QR/𝑆𝑅, 𝑇𝑃!/$, or 𝐺𝑅. Excepting 
the 𝑄𝑅/𝑆𝑅 pair, the −ve and +ve cases are reflectively symmetric about the 𝑉𝑃—𝐺𝑅 axis, while the 
neutral case shows different structure, which suggests that my neutral annotation and analysis might 
need revision. The overall structure indicates that in addition to the obvious 𝑃𝐿!/$  and 𝑇𝑃!/$ 
polarities, there is a limited 𝑄𝑅/𝑆𝑅 polarity, as there is comprehensive 𝑉𝑃/𝐺𝑅 polarity—of potential–
realization, of noumenal–phenomenal, of ‘beyond creation’–being.  
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Generically, for any class, and for each case of −ve, neutral, or +ve facial polytope, each constituent 
𝑃𝑃 can alternatively be uniquely described according to its property of gendered −ve, neutral, and/or 
+ve facial separation, hence d!#$ = 0	or	1: 

Table VI. The constituent PPs of each class as generic expressions of facial separation quality d= |−0+|. 

 Generic  Facial separation d  Class II  
  	𝐺𝑅    	|111|    𝐺𝑅𝐶𝑂   
 	𝑇𝑃$ 	𝑆𝑅 	𝑇𝑃!  	|110| 	|101| 	|011|  	𝑇𝑂 𝑆𝑅𝐶𝑂 	𝑇𝐶  
 	𝑃𝐿$ 	𝑄𝑅 	𝑃𝐿!  	|100| 	|010| 	|001|  	𝑂𝐻 	𝐶𝑂 	𝐶𝐵  
  	𝑉𝑃    	|000|    	𝑉𝑃   

 

This returns the tentative 3-fold order to bilateral symmetry, and the historical perspective of the 
perfection of the regular 𝑃𝐿s, though elsewhere I make the alternative case that it is the 𝑄𝑅s that are 
perfect, while the 𝑃𝐿 s are extremes [13]. But given that these polyhedra and tessellations are 
discovered as projections of the noumenal (ideal) into the phenomenal (contingent) realm, the 
enigmatic possibility remains that such limited 3-fold symmetry represents a trace of primordial 
evolution of formal symmetry, suggesting that the constraints and properties of space that we 
encounter might at the cosmic level be subject to change, and raising the intriguing question of 
whether such change would (or could only) be abrupt or gradual. One might speculate whether in our 
cosmos, three-fold symmetry is unstable (e.g., is it common in the animal kingdom? It seems at least 
uncommon); and to be subsumed into a kind of 2-step bilateral symmetry that I address in a 
subsequent paper, which is characterized by complementary forms as (−ve ↔ +ve) (in their pure 
form, dual), rather than identical, allowing the tentative self-reflective quality of the neutral (𝑉𝑃 ↔ 
𝐺𝑅 and 𝑄𝑅 ↔ 𝑆𝑅)). Further, do these patterns and their harmonic order correlate with quantum forms 
and field behavior, where resonance seems fundamental? 

 
6.   Conclusion 

Earlier intuition [11, 12] indicated that the elegance of the regular and semiregular polyhedra and 
tessellations must surely be matched by their order, and has inspired my subsequent research. 

 
Fig. 11: Separation of faces by −ve/ntrl/+ve gender. Each transition 𝑃𝑃#→𝑃𝑃( is characterized by a separation 
of neighboring faces from adjoining (d=0) to adjacent (d=1), in 3 X,Y,Z zones. Left to right: Generic, Class II 
polytopes, and IDs. 𝑃𝑃s evolve (devolve) upwards (downwards) 𝑉𝑃→𝐺𝑅 (𝐺𝑅→	𝑉𝑃). 
 

In response, Fig. 11 shows that any 𝑃𝑃 transition 𝑃𝑃#→𝑃𝑃' is characterized by a separation of 
neighboring faces from adjoining (d=0) to adjacent (d=1), in one of the 3 X, Y, or Z zones. 
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Fig. 14: The simultaneous various facial evolutions that apply. Double black lines of rising left, vertical, and 
rising right denote the separation of faces for the respective −ve Y, ntrl Z, +ve X (lower left, top, lower right) 
axes. Single black lines of varied dash denote the simultaneous evolution of faces of two paired (0→α) and 
(α→2), and (0→β) and (β→2), with 𝑃𝑃 faces colored cyan, yellow, magenta, respectively, where (0→α|β) lines 
are long close dashes, while (α|β→2) lines are short far dashes. In each schematic cube, the 4 −ve, ntrl, or +ve 
parallel lines denoting the evolution of faces correspond to the bundles of edges of the three zones of the cubic 
zonahedron. The double line zonal bundle separates the two faces of the schematic cube as enantiomorph of the 
rhombic schema, the polytopes of one face for d=0 where faces are adjoining (sharing a common vertex or 
edge), while those of the opposing face for d=1 where the faces are adjacent (separated by unit distance). The 
−ve, ntrl, +ve rhombs for the Y, Z, X axes are abstracted at top left, bottom, top right, respectively. All 3 cubic 
schema apply simultaneously; the −ve and +ve cubic schema are bilaterally symmetric, the transformations of 
the schema applying to the relationships (edges), not the 𝑃𝑃 s. All five classes demonstrate the same 
morphology, allowing for the dimensional difference between the polyhedra and the polygonal tessellations 
(Classes I–III cf. IV and V). 
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Fig. 15: Simultaneous transformation of faces by (0→α|β→2) evolution. As faces of one −ve/ntrl/+ve gender 
separate, faces of the remaining two genders transform, in pairs of transitions of 𝑃𝑃s of each zone. Quartiles 
show facial evolutionary stage, with zones in (0→α, β→2) or (0→β, α→2) pairs. Mid-points conserve facial 
separation, each zone with 1 (0, α, β, 2) face. Left to right: −ve; ntrl; +ve faces. 

 
Fig. 16. Y, Z, and X zone separation of the d=0 and d=1 rhombic schema of −ve, ntrl, +ve faces (left to right). 

 

Figure 15 demonstrates that for each case of −ve, ntrl, and +ve faces, as one zone of the cubic 
schema represents the separation of −ve, ntrl, or +ve faces, respectively, one of the other two zones 
represents two pairs of parallel 0→α and β→2 transitions, while the other zone represents two pairs of 
parallel 0→β and α→2 transitions. Figure 16 shows that for each case of −ve, ntrl, and +ve faces, the 
X, Y, or Z axial zone of separation of faces representing 0→0, α→α, β→β, and 2→2 of the cubic 
schema of d=0 and d=1, respectively, separates two corresponding rhombic schema 0 → α|β → 2 of 
d=0 and d=1, respectively, as Fig. 8 has previously shown. 

Hence the separation of faces appears fundamental to the progression of 𝑃𝑃s represented by the 
edges of the cubic schema, the 𝑆𝑂𝐹  for one gender being complemented by the simultaneous 
morphing of the faces of the other two genders according to either of two opposite edges of the 
rhombic schema of (0→α and β→2), or (0→β and α→2), respectively. 

This elegant morphology characterizes the order of the regular and semi-regular polyhedra and 
tessellations. Consequent upon the assumption of a null polytope in each of the five symmetry classes, 
and of degenerate 0D and 1D facial polytopes of certain vertices and edges by gender; the cubic 
schema of 𝑃𝑃s; its rotation to the vertical 𝑉𝑃→𝐺𝑅 √3 axis; the rhombic schema enantiomorphs of 
null 0, regular α or quasi-regular β, and 2𝑓 faces; the limited 3-fold symmetry to the order; the 
fundamental separation of faces d=0 to 1; and the transitional form of the snub enantiomorphs of each 
class at the center of the cubic schema, at the mid-point of the 𝑆𝑅𝑄𝑅—𝑄𝑅 jitterbug and main 𝑉𝑃—
𝐺𝑅 axes, the typology of the polyhedra and tessellations is hereby adequately described. 
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This work might find application in polyhedral geometry, crystallography, chemistry (phase 
transitions, bi-polymers, smart polymers, catalysts), artificial bone matrix (integrating variable 
flexibility), biomedicine (triggered deployment of dosage of drug from nanocages), smart material, 
wearable (conformable) electronics, space structures (dynamic structures, deployable antennae in 
Space), nanostructures, perhaps quantum mechanics and field theory, and potentially, insights into the 
nature of space itself. Future research is intended to refine the order of the all-space-filling periodic 
arrays of 2D and 3D 𝑃𝑇s in the light of this cubic schema. 

Historically, the regular (and semi-regular) polyhedra as independent entities have been recognized 
as perfect (and semi-perfect) forms. However, while such formal perfection should at the very least be 
matched in their overall structure and morphology, I am unaware of any adequate order having 
previously been advanced. This paper redresses that shortfall with reference to the separation of one 
set of +ve, ntrl, or −ve faces characterizing the zonahedral progression of 𝑃𝑃' to 𝑃𝑃" on the rotated 
2.5D cubic schema, while the other two sets of faces evolve according to the rhombic schema. It has 
been a privilege to glimpse such rare perfection. 
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Supplementary Information: References [3−11, 13] as PDFs (68−61, 06, 07), and PDF 71 of this 
paper, in color or greyscale, are available at http://www.rmeurant.com/its/papers/polygon-1.html 
 
Nomenclature: NON-DIMENSIONAL: –ve, negative;	 ntrl, neutral; +ve, positive; 𝑓, frequency (of 𝐹); 
𝐺𝑅, great rhombic; 𝐿0−𝐿2, level (0, 1= α and β, 2) of rhombic schema; 𝑃, pole or polar; 𝑆1– 4, strata 
(1–4) of rotated cubic schema; 𝑆𝑛𝑏 , snub; 𝑆𝑅 , small rhombic; 𝑇𝑟𝑛𝑐 , truncated. ● ZERO-
DIMENSIONAL: 𝑉#, neutral vertex (𝑁𝑉); 𝑉, vertex (but can be 1 or 2D ‘𝐹’); 𝑉𝑃, verticial polytope 
hence 𝑉𝑃2–4. ● ONE-DIMENSIONAL: 𝑑, distance of proximal 𝐹s (0 or 1); 𝐸, edge (𝐸𝐺) but here can be 
2D ‘𝐹’; 𝐸#, neutral edge (𝑁𝐸) but here 2D 2-gon ‘𝐹’. ● TWO-DIMENSIONAL: 𝐷𝐷, dodecagon (12-
gon); 𝐻𝑋, hexagon or hexagonal array; 𝑂𝐺, octagon; 𝑃𝑅, polar polygon; 𝑅𝐻, rotated hexagon; 𝑅𝑃, 
‘rotated’ polar polygon (trunc.); 𝑅𝑆 , ‘rotated’ (trunc.) square; 𝑅𝑇 , ‘rotated’ (trunc.) triangle; 𝑅𝑋 , 
‘rotated’ (trunc.) hexagon; 𝑆𝑄, square;	𝑆𝑄#, neutral square (𝑁𝑆); 𝑆𝑄: 𝑆𝑄, square–square array; 𝑇𝑃, 
truncated polar polygon (2𝑓 ); 𝑇𝑅 , triangle or triangular array; 𝑇𝑅:𝐻𝑋 , tri-hex array; 𝑇𝑟𝑛𝑐𝐻𝑋 , 
truncated hexagonal array; 𝑇𝑟𝑛𝑐𝑇𝑅, truncated triagonal array; 𝑍𝐺, zonagon. ● THREE-DIMENSIONAL: 
𝐶𝐵 , cube; 𝐶𝑂 , cuboctahedron; 𝐷𝐶 , dodecahedron;	 𝐺𝑅𝐶𝑂 , great rhombic cuboctahedron; 𝐼𝐶 , 
icosahedron; 𝐼𝐶: 𝐷𝐶, icosidodecahedron; 𝑂𝐻, octahedron; 𝑂𝐻: 𝐶𝐵, octahexahedron (= 𝐶𝑂); 𝑆𝑛𝑏𝐶𝑂, 
snub cuboctahedron; 𝑆𝑅𝐶𝑂 , small rhombic cuboctahedron; 𝑇𝐶 , truncated cube; 𝑇𝐷 , truncated 
dodecahedron;	 𝑇𝐻 , tetrahedron; 𝑇𝐻: 𝑇𝐻 , tetra-tetrahedron (Class I colored 𝑂𝐻 ); 𝑇𝐼 , truncated 
icosahedron; 𝑇𝑂, truncated octahedron; 𝑇𝑃, truncated polar polytope; 𝑇𝑇, truncated tetrahedron; 𝑍𝐻, 
zonahedron. ● MULTI-DIMENSIONAL: 𝐹, face = facial 𝑃𝑇 (in this paper, 0D, 1D, or 2D); 𝛼, regular 
facial polytope; 𝛽 , quasiregular facial polytope;	 𝐺𝑅𝑄𝑅 , great rhombic quasiregular;	 𝑃𝐿 , polar 
polytope; 𝑃𝑃, primary polytope; 𝑃𝑇, polytope; 𝑄𝑅, quasiregular;	𝑆𝑛𝑏𝑄𝑅, snub quasiregular;	𝑆𝑅𝑄𝑅, 
small rhombic quasiregular. ■ 
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This paper revises the author’s “The morphology of the regular and semi-regular polyhedra and 
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