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ABSTRACT 

The 2.5D cubic schema of polyhedra according to the separation of faces and rhombic 
schema of faces that I have developed is applied to suggest core–shell and core–multi-shell 
geometries, using Class II of {2,3,4} symmetry as an exemplary case. The morphology of 
polyhedra by symmetry class and inclusion of a null element VP recognize that each of the 
8 Primary Polyhedra (PPs) of each class consists of facial polytopes (PTs) that include 0-
dimensional (0-D) vertices (1-gons), and 1-D edges (2-gons), as well as 2-D polygons (n-
gons), where only those PTs that lie normal to the axes of symmetry are considered 
principial. Core–shell configurations are developed for pairs of PPs that share an edge of 
the cubic schema, by locating the smaller PP within the larger PP, where both are concentric, 
of unit edge length, and share coaxial negative (–ve), neutral (ntrl), and positive (+ve) axes; 
in Class II, these consist of facial, edge, and verticial axes of the cube, respectively. 
Restricting the pairings to the shared edges of the cubic schema that is abstracted from the 
separation of faces reduces the possible cases in each class from 56 to 12, ensuring their 
compatibility. The interlayer between inner and outer PPs is partitioned into radial prismatic 
(PRS), pyramidal (PYR), and truncated pyramidal frustum (TFM) (i.e., cupola) elements of 
(0, α | β, or 2) frequency/orientation according to the rhombic schema of faces (Fig. 1), 
where 0 refers to the VT; α | β in the –ve and +ve cases to facial rotation (truncation), α being 
the facial PT of frequency n of the polar (OH or CB), β of the quasi-regular (CO), and in the 
ntrl case, α | β refer to the PL+–PL– orientations of ntrl EGs; and 2 refers to the 2n double 
frequency case. Inner vertices project to outer vertices, ntrl edges, or n-gons to form 0-PRSs, 
ntrl 2-PYRs, or n-PYRs; inner ntrl edges project to outer ntrl edges or squares to form 2-
PRSs or 2-TFMs; and inner n-gons project to outer n-gons or 2n-gons to form n-PRSs or n-
TFMs, while 2n-gons project to 2n-gons to form n-PRSs. These are all radial, on the main 
symmetry axes, and together fill the interlayer space. The heights of these elements are 
derivable from the inradii of the concentric PPs, and show constant increase by gender and 
axis of the cubic schema. Core–multi-shell configurations are developed by abstracting 4 or 
3 consecutive sequences of PPs from the cubic schema, thus utilising the core VP and/or 
outer GR, respectively, and similarly aligning them coaxially and concentrically; each of the 
3 or 2 interlayers thus formed being completely filled by the corresponding PRS, PYR, and 
TFM elements. The geometries developed might apply to nanoarchitecture, and elsewhere. 
 
Key words: separation of faces, structural morphology, order of polyhedra, core–shell, 
core–multi-shell, nanostructure 
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1.   THE RHOMBIC SCHEMA AND THE SEPARATION OF FACES IN THE CUBIC SCHEMA  

Further inspired by the work of Critchlow [1], and Grünbaum & Shephard [2], and following my much 
earlier research [3], the rhombic schema that I have earlier developed [4] shows the progression that faces 
undergo as the steps of the cubic schema progress from 𝑉𝑃 to 𝐺𝑃 (Fig. 1). The 0-faces are vertices (𝑉𝑇s); 
they first progress to α or β faces; −ve & +ve α faces are the (non-verticial) faces of the correspondingly 
gendered 𝑃𝐿, while −ve & +ve β faces are the corresponding faces of the 𝑄𝑅, and are rotated (truncated) 
versions of either α face; ntrl α & β faces are the −ve & +ve ntrl faces (edges) of the −ve & +ve PL, 
respectively. In Class II, the −ve face is the 𝑆𝑄 of the 𝐶𝐵, the +ve is the 𝑇𝑅 of the 𝑂𝐻; the ntrl α & β are 
the edges (𝐸𝐺s) of the 𝑂𝐻 and 𝐶𝐵, respectively. The 2-faces are the double frequency case of the α|β 
face; in Class II, the −ve, ntrl, & +ve 𝑂𝐺, 𝑁𝑆, & 𝐻𝑋 of 𝐺𝑅 (or of 𝑇𝐶, 𝑆𝑅, & 𝑇𝑂), respectively. 

Figure 2 shows the cubic schema that I have earlier developed [4] in horizontal (upper) and bird’s eye 
view (lower) for Class II of {2,3,4} symmetry; it generalizes to all 5 symmetry classes. This schema, 
which is abstracted from the separation of faces, is critical to exploring the morphology of the polyhedra 
as they stand in relation to one another, and is central to evincing the various core–shell and core–multi-
shell configurations of this paper. Each (gendered) face appears twice in the cubic schema progression; 
it first appears at spacing of adjoining faces of d=0; then, by the separation of faces, appears at spacing 
of adjacent faces of d=1. Pairs of the same kind of faces, if adjoining, share a common ntrl 𝑉𝑇 (𝑁𝑉) or 
𝐸𝐺 (𝑁𝐸); if adjacent, are separated by a 𝑁𝐸 or ntrl square face (𝑁𝑆). When a 𝑃𝑃 transforms to another 
𝑃𝑃 in the vertical progression from 𝑉𝑃 to 𝐺𝑃, along the edges of the cubic schema, of the three genders 
(−ve / ntrl / +ve), the face of one gender undergoes the separation of faces, so those faces remain of the 
same kind (0, α or β, 2), but the distance apart of adjoining pairs increases by unit (edge) distance to 
become adjacent pairs. Meanwhile, the faces of the other two genders transform to the next higher state 
on the rhombic schema. Thus the cubic schema is developed from two rhombic schema (Fig. 1, right), a 
lower d=0 case of adjoining faces, and an upper d=1 case of adjacent faces. This corresponds to a front 
horizontal view of the cubic schema. 

The cubic schema of two overlaid rhombic schema represents the case for the ntrl faces, presenting the 
standard horizontal view of the cluster of 𝑃𝑃s. Figure 3 shows that rotating the 𝑃𝑃 cluster by +2π/3 about 
the vertical 𝑉𝑃–𝐺𝑅 axis, where individual 𝑃𝑃s need also to rotate individually in unison to present the 
proper face, presents the corresponding schema for the +ve faces; rotating by −2π/3 about the vertical 
VP–GR axis, it presents the schema for the −ve faces. 

Therefore, all cases of concentric aligned inner 𝑃𝑃  and outer 𝑃𝑃  are accommodated, as the 
corresponding inner and outer faces accord with the schema; and thus the interlayer cells described 
between inner and outer face are either prisms for the separation of faces case, of 𝑉𝑇→𝑉𝑇, α→α or β→β, 
or 2→2 𝑃𝑅𝑆; or they are transformations of 𝑁𝑉→𝑁𝐸, 𝑉𝑇→α, 𝑉𝑇→β; 𝑁𝐸→𝑁𝑆; or α →2, β →2, which 
form 2-𝑃𝑌𝑅, α-𝑃𝑌𝑅, β-𝑃𝑌𝑅; 2-𝑇𝐹𝑀; or α-𝑇𝐹𝑀, β-𝑇𝐹𝑀, respectively. Therefore the only kinds of 
interlayer cells are 𝑃𝑅S, 𝑃𝑌𝑅, and 𝑇𝐹𝑀, in which the 0-𝑃𝑅𝑆 is a virtual spike, 2-𝑃𝑌𝑅 is an isosceles 𝑇𝑅, 
2-𝑇𝐹𝑀 is a gable, and ntrl α→α and β→β are 2-𝑃𝑅𝑆s, i.e., 2-gon edge prisms (of different orientation). 
All cells are radially oriented, coaxial to the symmetry axes. This presumes that the inner and outer 𝑃𝑃 
pairs are directly related (share an edge) on the cubic schema. Figure 1 shows these various cases in plan 
at the mid-points of the edges of the rhombic schema for each gender (left), see also Figs. 3 & 4. 
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In Fig. 1 below,  indicates that Neutral interlayer cells α-𝑃𝑌𝑅 & β -𝑃𝑌𝑅 are 2D isosceles 𝑇𝑅s that span 
between inner 𝑁𝑉 and outer 𝑁𝐸, while α-𝑇𝐹𝑀 & β-𝑇𝐹𝑀 are gables spanning between 𝑁𝐸 & 𝑁𝑆; 
indicates that interlayer cells α & β 𝑃𝑌𝑅  & 𝑇𝐹𝑀 are inserted at mid-points of the rhombic schema 
between inner and outer faces; meanwhile, 𝑃𝑅𝑆 can be imagined at each node of the generic rhombic 
schema. Then,  indicates that vertical edges show separation of faces, with associated (0, α | β, and 2) 
𝑃𝑅𝑆s; angled edges are corresponding transformations of faces. 

 

Figure 1: Rhombic Schema of the progression of faces in the cubic schema: Left: Class II −ve, ntrl, and 
+ve schema of faces; below, generic rhombic schema of faces. Right, development of cubic schema of 
overlaid rhombic schema; lower rhomb, adjoining faces; upper, adjacent faces; d=0→1. 

Next,  indicates that the lower rhomb of the two cubic schema at lower and upper right shows the 
adjoining case of d=0, while the upper rhomb shows the adjacent case of d=1, while  indicates that 
interlayer cells 𝑃𝑅𝑆 , 𝑃𝑌𝑅 , 𝑇𝐹𝑀  start from 𝑉𝑃  with 𝑃𝑅𝑆  or 𝑃𝑌𝑅 , end with 𝑃𝑅𝑆  or 𝑇𝐹𝑀  to 𝐺𝑅 ; 
meanwhile,  indicates that angled edges in the schema are associated α|β 𝑃𝑌𝑅s from 0 faces (𝑉𝑇), or 
α|β 𝑇𝐹𝑀s to 2 faces (𝑂𝐺, 𝑁𝑆, 𝐻𝑋 by gender). Faces of each gender migrate through the cubic schema 
from 𝑉𝑃  to 𝐺𝑅  through 𝑃𝑅𝑆 , 𝑃𝑌𝑅 , & 𝑇𝐹𝑀  in various orders. Finally,  notes that 20 node lies 
concealed behind 01 node at the center of the complex; 2-𝑃𝑅𝑆 spans between inner 20 and outer 21 faces. 

This analysis assumes and considers principial faces of the 𝑃𝑃s; a principial face is a polytope (𝑃𝑇) of 
0D, 1D, or 2D that lies normal to a symmetry axis – so a “face” in my analysis may be a vertex 𝑉𝑇 (1-
gon) of 0D, edge 𝐸𝐺 (2-gon) of 1D, or a polygon (n-gon) of 2D. Hence, 𝑉𝑃 is considered to consist of 
𝑉𝑇! , 𝑉𝑇" , & 𝑉𝑇# ; 𝑂𝐻  of 𝑉𝑇! , 𝐸𝐺" , 𝑇𝑅# ; 𝐶𝐵  of 𝑆𝑄! , 𝐸𝐺" , 𝑉𝑇# ; 𝑇𝑂  of 𝑅𝑇! , 𝐸𝐺" , 𝐻𝑋# ; 𝑇𝐶  of 
𝑂𝐺! , 𝐸𝐺" , 𝑅𝑇# ; 𝑆𝑅  of 𝑆𝑄! , 𝑆𝑄" , 𝑇𝑅# ; and 𝐺𝑅  of 𝑂𝐺! , 𝑆𝑄" , 𝐻𝑋#  (where 𝑉𝑇"  = 𝑁𝑉; 𝐸𝐺"  = 𝑁𝐸 ; 
𝑆𝑄" = 𝑁𝑆). Therefore, 𝑉𝑇s and 𝐸𝐺s of the 𝐺𝑅 & 𝑆𝑅, and 𝑉𝑇s and some 𝐸𝐺s (non-𝑁𝐸s) of the 𝑇𝑂 & 
𝑇𝐶, are not principial, so are only considered incidentally (as parts of principial 𝑃𝑇s). This assumption 
works consistently throughout this analysis and my general exploration [3−14]. A 𝑁𝑉 consists of a 1-gon 
of 1 𝑉𝑇 and 1 𝐸𝐺, which edge might be considered to be of unit length, coiled up on itself, as in quantum. 
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Meanwhile, a 𝑁𝐸 consists of a 2-gon of 2 𝑉𝑇s and 2 colinear 𝐸𝐺s. So a 𝑁𝑉 of the 𝐶𝑂 can be considered 
to mediate pairs of adjoining −ve 𝑅𝑆s, and of adjoining 𝑅𝑇s, while a 𝑁𝑉 of a 𝑉𝑃 mediates pairs of 
adjoining −ve 𝑉𝑇s, and of adjoining +ve 𝑉𝑇s. While I exploit the limited three-fold symmetry of −ve, 
ntrl and +ve elements, ntrl elements are fundamentally different from the other two, in being of 2-
frequency, with each ntrl element separating two −ve faces on one of its transverse axes, and two +ve 
faces on the other, orthogonal, transverse axis (PDF 71). 

 

Figure 2: Horizontal views (upper), and views from below (lower), of the cubic schema, showing generic 
& Class II steps of the separation of faces (outer), and Class II steps of the separation of faces (inner). 
Horizontal views show separation of −ve faces right to left, ntrl faces below to above, and +ve faces left 
to right. Views from below show separation by arrows, with 𝑉𝑃 (closest) and 𝐺𝑅 (obscured; farthest) at 
center; out-arrows from source 𝑉𝑃, in-arrows toward goal 𝐺𝑅 (𝐶𝐵 shows inverted cubic schema form). 

2.   CORE–SHELL STRUCTURE IN THE SEPARATION OF FACES  

The transitions between 𝑃𝑃s generated by the various kinds of separation of faces suggest for the 3D 
polygonal cases of Classes I−III of {2,3,3}, {2,3,4}, and {2,3,5} symmetry, locating the source 𝑃𝑃 
concentric with the goal 𝑃𝑃, and aligning their mutual −ve, ntrl, and +ve axes, to create a core–shell 
structure, where both core and source 𝑃𝑃s are of unit edge length. These configurations might then find 
applications in diverse fields at varying scale from quantum, nanoscale, human, to large-scale (space 
structures), and beyond. While the geometry in this section is investigated for the single isolated core–
shell case, its applications might be extended to single- or several-layer planar arrays, and to volumetric 
arrays. It is relevant to note that the 8 𝑃𝑃s of the Class II polygons are also the constituent 𝑃𝑃s of Class 
III of the all-space-filling {2,3,4}|{2,3,4} periodic arrays of the regular and semi-regular polyhedra (the 
3D honeycombs), and together with the 𝑃𝑃s of Class I of the polyhedra, constitute the 𝑃𝑃s of Class II of 
the all-space-filling {2,3,3}|{2,3,4} periodic arrays (honeycombs), while 4 of the 𝑃𝑃s of the Class I 
polyhedra are the constituents of the singular all-space-filling {2,3,3}|{2,3,3} periodic array.  
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Figure 3: Rotations by 2π/3 of the Class II cubic schema about the schema’s vertical 𝐺𝑃–𝑉𝑃 axis. The 
rotations provide snapshots that reflect the vertical correspondence of facial separation of d=0 and d=1 
(lower to upper). In addition to the 𝐺𝑅–𝑉𝑃 axial rotation of the 𝑃𝑃 cluster, to present the appropriate 
face, each 3D 𝑃𝑃 also needs to rotate individually, but in parallel, by a common angle: ntrl → +ve, 
(110)→(111); +ve → −ve, (111)→(000); −ve → ntrl, (000)→(110)). The PP cluster rotates to present 
different gender of faces of the same or reflected formal structure. 

 
I postulate that the morphology of space that these various configurations delineate underlies the potential 
form that space can support in terms of quantum phenomena, molecular structure, nanoarchitecture, 
chemical compounds, crystalline forms, and space structures, unless it is found that space itself can vary 
at different scale, e.g., at the quantum level and nanoscale. This recognizes that the geometric potential 
of empirical space as evidenced in these configurations and relationships is not specifically bound in 
terms of location, scale, or orientation, but does demonstrate some of the very real constraints on what is 
possible within space, and its inherent capacity to articulate harmonic structure. In later work, I expect to 
extend these principles to the polygonal arrays of Classes IV & V of the regular and semi-regular 
polytopes that constitute the all-space-filling {2,3,6} and {2,4,4} periodic arrays of polygons that are the 
regular and semi-regular tessellations of the plane, replacing the equal edge length by equal period length. 
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Figure 4: Class II cubic schema of the separating −ve, ntrl, or +ve faces at left, above, and right, 
respectively; according to the 2π/3 rotations of the cubic schema of 𝑃𝑃s about the schema’s vertical 
𝐺𝑃–𝑉𝑃 axis. The interlayers of the −ve, ntrl, and +ve schema are composed of (0, α | β, or 2) 𝑃𝑅𝑆s, (α 
or β) 𝑃𝑌𝑅s, or (α or β) 𝑇𝐹𝑀s, and are derived at each axial rotation of faces. The ntrl α | β schema 
differs significantly from the −ve & +ve α | β schema, although deeply akin. The same formal/reflected 
structure is seen in the interlayer cases derived from the pairings of faces. 

In the transition from core to shell, of inner 𝑃𝑃 to outer 𝑃𝑃, the 2D polygons of the separating faces 
generate radial polygonal prisms. (A familiar example is the 𝐶𝐵 inside 𝑆𝑅𝐶𝑂, where separating −ve 𝑆𝑄 
faces of the 𝐶𝐵 generate 𝑆𝑄 prisms that are cuboids of 1 × 1 × 1 √2⁄  size). In any particular case, the 
separation of faces of one gender is accompanied by the transformation of the faces of the other two 
genders; in the interlayer between inner and outer 𝑃𝑃, these form radial 𝑃𝑌𝑅s and 𝑇𝐹𝑀s, so that the 
interlayer space is filled with radial 𝑃𝑅𝑆s, 𝑃𝑌𝑅s, and 𝑇𝐹𝑀s. Allowing ntrl 1D faces of edge (𝐸) to 
generate edge prisms (𝐸-𝑃𝑅𝑆), and −ve, ntrl, and +ve 0D faces of 𝑉 to generate vertex prisms (𝑉-𝑃𝑅𝑆), 
it becomes evident that in each of the 3 classes of regular and semi-regular polyhedra, just 12 such core–
shell structures can be found, i.e., 4 for each of the −ve, ntrl, and +ve separation of faces, which underlies 
the cubic schema. In each class, 𝐶𝑜𝑟𝑒 → 𝑆ℎ𝑒𝑙𝑙: Step 1. 𝑉𝑃 → 𝑃𝐿#, 𝑉𝑃 → 𝑄𝑅, and 𝑉𝑃 → 𝑃𝐿!; Step 2. 
𝑃𝐿#  → 𝑆𝑅 and 𝑃𝐿#  → 𝑇𝑃# , 𝑄𝑅 → 𝑇𝑃#  and 𝑄𝑅 → 𝑇𝑃! , 𝑃𝐿!  → 𝑇𝑃!  and 𝑃𝐿!  → 𝑆𝑅; Step 3. 𝑇𝑃! → 
𝐺𝑅, 𝑆𝑅 → 𝐺𝑅, and 𝑇𝑃# → 𝐺𝑅. For example in Figs. 2–4, in Class II, the separating −ve and +ve faces of 
the 𝑄𝑅  𝐶𝑂  on their −ve and +ve axes to the 𝑇𝑃#  𝑇𝑂  and 𝑇𝑃!  𝑇𝐶  will form 𝑅𝑆  and 𝑇𝑅  𝑃𝑅𝑆 s, 
respectively, bearing in mind that the inner CO and outer 𝑇𝑂 and 𝑇𝐶 are of unit edge length. 

Table I shows the 12 separating facial PTs for the generic case and their Core and Shell 𝑃𝑇s, while Table 
II shows the generic and Class I−V separating pairs and their Core and Shell 𝑃𝑇s. 
  

PP
schema

axial
rotation
about

VP–GR
vertical

axis
> β:TFM > < α:TFM <

2
TP+

0
PL–

β
QR

0
VP

β
TP–

α
PL+

α
SR

> β:TFM > < α:TFM <

0:P
RS

2:P
RS

β:P
RS

β:P
RS

< β:PYR <

< β:PYR <

> α:PYR >

> α:PYR >

2
GR

> α:TFM > < β:TFM <

2
TP–

0
PL+

α
PL–

β
QR

0
VP

β
TP+

α
SR

> α:TFM > < β:TFM <

0:P
RS

2:P
RS

α:P
RS

β:P
RS

< α:PYR <

< α:PYR <

> β:PYR >

> β:PYR >

2
GR

> α:TFM > < β:TFM <

2
GR

2
SR

α
TP+

β
TP–

0
VP

0
QR

α
PL+

β
PL–

> α:TFM > < β:TFM <

0:P
RS

2:P
RS

α:P
RS

β:P
RS

< α:PYR <

< α:PYR <

> β:PYR >

> β:PYR >

2π/3

2π/3 2π/3



European Journal of Applied Sciences (EJAS)      Vol. 11, Issue 1, January-2022 

Services for Science and Education – United Kingdom 
 

100 

 

Table I. The twelve separating facial 𝑃𝑇s for the Generic meta-class 
and their Core & Shell polytopes. 

 Negative   Neutral   Positive  
Separating 
facial 𝑃𝑇s 

Source 
Core 𝑃𝑇 

Goal 
Shell 𝑃𝑇 

Separating 
facial 𝑃𝑇s 

Source 
Core 𝑃𝑇 

Goal 
Shell 𝑃𝑇 

Separating 
facial 𝑃𝑇s 

Source 
Core 𝑃𝑇 

Goal 
Shell 𝑃𝑇 

𝐹2! 𝑇𝑃! 𝐺𝑅 𝐹$" 𝑆𝑅 𝐺𝑅 𝐹2# 𝑇𝑃# 𝐺𝑅 
𝐹β! 𝑄𝑅 𝑇𝑃# 𝐹β" 𝑃𝐿! 𝑇𝑃! 𝐹β# 𝑄𝑅 𝑇𝑃! 
𝐹α! 𝑃𝐿! 𝑆𝑅 𝐹α" 𝑃𝐿# 𝑇𝑃# 𝐹α# 𝑃𝐿# 𝑆𝑅 
𝐹"! 𝑉𝑃 𝑃𝐿# 𝐹"" 𝑉𝑃 𝑄𝑅 𝐹"# 𝑉𝑃 𝑃𝐿! 

NB. 𝐹!"=𝑉"; 𝐹!!=𝑉!, 𝐹#!=𝐸#!, 𝐹$!=𝐸$!, 𝐹%!=𝐹!; 𝐹!&=𝑉&. According to this model, as described in my cubic 
schema [4], facial polytopes can be 𝑉𝑇s (1-gons), 𝐸𝐺s (2-gons), or 𝑃𝐺s, providing that they are on −ve, ntrl, 
or +ve symmetry axes, though not all facial 𝑃𝑇s are so located (e.g., 𝑉𝑇s and 𝐸𝐺s of 𝑆𝑅𝐶𝑂 & 𝐺𝑅𝐶𝑂). The 
(0, α | β, and 2) faces are as given in my rhombic schema (Fig. 1) [4: Fig. 3]. 

Table II. Separating 𝑃𝑃 pairs for the Generic meta-class 
and Classes I−V and their Core and Shell 𝑃𝑇s. 

  Negative   Neutral   Positive  
CLASS 𝑃𝑇s 

Separate 
Source 

Core 𝑃𝑇 
Goal 

Shell 𝑃𝑇 
𝑃𝑇s 

Separate 
Source 

Core 𝑃𝑇 
Goal 

Shell 𝑃𝑇 
𝑃𝑇s 

Separate 
Source 

Core 𝑃𝑇 
Goal 

Shell 𝑃𝑇 
 𝐹"! 𝑉𝑃 𝑃𝐿# 𝐹"" 𝑉𝑃 𝑄𝑅 𝐹"# 𝑉𝑃 𝑃𝐿! 

Generic 𝐹α! 𝑃𝐿! 𝑆𝑅 𝐹α" 𝑃𝐿# 𝑇𝑃# 𝐹α# 𝑃𝐿# 𝑆𝑅 
{ntrl,+,−} 𝐹β! 𝑄𝑅 𝑇𝑃# 𝐹β" 𝑃𝐿! 𝑇𝑃! 𝐹β# 𝑄𝑅 𝑇𝑃! 

 𝐹2! 𝑇𝑃! 𝐺𝑅 𝐹$" 𝑆𝑅 𝐺𝑅 𝐹2# 𝑇𝑃# 𝐺𝑅 
 𝑣! 𝑣𝑡: 𝑣𝑡 𝑠𝑞: 𝑣𝑡 𝑣" 𝑣𝑡: 𝑣𝑡 𝑟𝑠: 𝑟𝑠 𝑣# 𝑣𝑡: 𝑣𝑡 𝑣𝑡: 𝑠𝑞 

V 𝑠𝑞! 𝑣𝑡: 𝑠𝑞 𝑠𝑞: 𝑠𝑞 𝑒%" 𝑠𝑞: 𝑣𝑡 𝑜𝑔: 𝑟𝑠 𝑠𝑞# 𝑠𝑞: 𝑣𝑡 𝑠𝑞: 𝑠𝑞 
{2,4,4} 𝑟𝑠! 𝑟𝑠: 𝑟𝑠 𝑜𝑔: 𝑟𝑠 𝑒&

" 𝑣𝑡: 𝑠𝑞 𝑟𝑠: 𝑜𝑔 𝑟𝑠# 𝑟𝑠: 𝑟𝑠 𝑟𝑠: 𝑜𝑔 
 𝑜𝑔! 𝑟𝑠: 𝑜𝑔 𝑜𝑔: 𝑜𝑔 𝑠𝑞" 𝑠𝑞: 𝑠𝑞 𝑜𝑔: 𝑜𝑔 𝑜𝑔# 𝑜𝑔: 𝑟𝑠 𝑜𝑔: 𝑜𝑔 
 𝑣! 𝑣𝑡: 𝑣𝑡 𝑡𝑟: 𝑣𝑡 𝑣" 𝑣𝑡: 𝑣𝑡 𝑟𝑡: 𝑟𝑥 𝑣# 𝑣𝑡: 𝑣𝑡 𝑣𝑡: ℎ𝑥 

IV ℎ𝑥! 𝑣𝑡: ℎ𝑥 𝑡𝑟: ℎ𝑥 𝑒%" 𝑡𝑟: 𝑣𝑡 ℎ𝑥: 𝑟𝑥 𝑡𝑟# 𝑡𝑟: 𝑣𝑡 𝑡𝑟: ℎ𝑥 
{2,3,6} 𝑟𝑥! 𝑟𝑡: 𝑟𝑥 ℎ𝑥: 𝑟𝑥 𝑒&

" 𝑣𝑡: ℎ𝑥 𝑟𝑡: 𝑑𝑑 𝑟𝑡# 𝑟𝑡: 𝑟𝑥 𝑟𝑡: 𝑑𝑑 
 𝑑𝑑! 𝑟𝑡: 𝑑𝑑 ℎ𝑥: 𝑑𝑑 𝑠𝑞" 𝑡𝑟: ℎ𝑥 ℎ𝑥: 𝑑𝑑 ℎ𝑥# ℎ𝑥: 𝑟𝑥 ℎ𝑥: 𝑑𝑑 
 𝑉! 𝑉𝑃 𝐼𝐶 𝑉" 𝑉𝑃 𝐼𝐷 𝑉# 𝑉𝑃 𝐷𝐶 

III 𝑃𝑁 𝐷𝐶 𝑆𝑅𝐼𝐷 𝐸%" 𝐼𝐶 𝑇𝐼 𝑇𝑅 𝐼𝐶 𝑆𝑅𝐼𝐷 
{2,3,5} 𝑅𝑃 𝐼𝐷 𝑇𝐼 𝐸&

" 𝐷𝐶 𝑇𝐷 𝑅𝑇 𝐼𝐷 𝑇𝐷 
 𝐷𝐺 𝑇𝐷 𝐺𝑅𝐼𝐷 𝑆𝑄" 𝑆𝑅𝐼𝐷 𝐺𝑅𝐼𝐷 𝐻𝑋 𝑇𝐼 𝐺𝑅𝐼𝐷 
 𝑉! 𝑉𝑃 𝑂𝐻 𝑉" 𝑉𝑃 𝐶𝑂 𝑉# 𝑉𝑃 𝐶𝐵 

II 𝑆𝑄 𝐶𝐵 𝑆𝑅𝐶𝑂 𝐸%" 𝑂𝐻 𝑇𝑂 𝑇𝑅 𝑂𝐻 𝑆𝑅𝐶𝑂 
{2,3,4} 𝑅𝑆 𝐶𝑂 𝑇𝑂 𝐸&

" 𝐶𝐵 𝑇𝐶 𝑅𝑇 𝐶𝑂 𝑇𝐶 
 𝑂𝐺 𝑇𝐶 𝐺𝑅𝐶𝑂 𝑆𝑄" 𝑆𝑅𝐶𝑂 𝐺𝑅𝐶𝑂 𝐻𝑋 𝑇𝑂 𝐺𝑅𝐶𝑂 
 𝑉! 𝑉𝑃 𝑇𝐻# 𝑉" 𝑉𝑃 𝑂𝐻∗ 𝑉# 𝑉𝑃 𝑇𝐻! 
I 𝑇𝑅! 𝑇𝐻! 𝐶𝑂∗ 𝐸%" 𝑇𝐻# 𝑇𝑇# 𝑇𝑅# 𝑇𝐻# 𝐶𝑂∗ 

{2,3,3} 𝑅𝑇! 𝑂𝐻∗ 𝑇𝑇# 𝐸&
" 𝑇𝐻! 𝑇𝑇! 𝑅𝑇# 𝑂𝐻∗ 𝑇𝑇! 

 𝐻𝑋! 𝑇𝑇! 𝑇𝑂∗ 𝑆𝑄" 𝐶𝑂∗ 𝑇𝑂∗ 𝐻𝑋# 𝑇𝑇# 𝑇𝑂∗ 
NB: * denotes colored; 𝑂𝐻∗ = Tetra-tetrahedron (𝑇𝑅: 𝑇𝑅) (𝑄𝑅); 𝐶𝑂∗ = 𝑆𝑅	𝑇𝑅: 𝑇𝑅; 𝑇𝑂∗ = 𝐺𝑅	𝑇𝑅: 𝑇𝑅 [3: Fig. 7]. 
Refer Nomenclature, p.21; see also my earlier papers. 
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3.   CORE–MULTI-SHELL STRUCTURE 

The developed 2.5D schema of the 𝑃𝑃s of each class of the polyhedra according to the sequential 
separation of faces [4] reveals that within each class, 6 core–multi-shell configurations can be advanced, 
each with core 𝑉𝑃 (corresponding to its class) and 3 shells, in each case with the outermost shell being 
the 𝐺𝑅	𝑄𝑅 of that class. These could be differentiated into 2-step sequence (core + 2 layers) from 𝑉𝑃, 2-
step sequence to 𝐺𝑅 , as well as 3-step 𝑉𝑃–𝐺𝑅  (core + 3 layers). Each of the 6 core–multi-shell 
configurations is characterized by three consecutive steps of separation of −ve, ntrl, or +ve faces, so that 
the separation of each gender (−ve, ntrl, +ve) can occur only once. Any 𝑃𝑃 is characterized by a unique 
combination of realized separations, though the order in which the gendered separation occurs can vary. 
While the 𝑉𝑃 is characterized by no separation, 𝑃𝐿#, 𝑄𝑅, & 𝑃𝐿! evolve from a single −ve, ntrl, or +ve 
separation, respectively; 𝑇𝑃!, 𝑆𝑅, & 𝑇𝑃# evolve from two −ve, ntrl, or +ve separations, in either of two 
ways; and 𝐺𝑅 evolves from all three −ve, ntrl, and +ve separations in any of 6 different ways. Therefore 
the 8 𝑃𝑃s show a natural classification into 4 classes of [𝑉𝑃]; [𝑃𝐿#, 𝑄𝑅, & 𝑃𝐿!]; [𝑇𝑃!, 𝑆𝑅, & 𝑇𝑃#]; 
and [𝐺𝑅], according to their history of facial separation. They also show natural affinities, according to 
whether they are sequentially related (by the separation of faces/cubic schema). Note also from Table III, 
center, that the division of the 𝑃𝑃s into lower and upper rhombs accords with whether the separation of 
neutral faces has occurred (d=1), or has not (d=0) (Fig. 1, right). The lower rhomb of <𝑉𝑃, 𝑃𝐿#|𝑃𝐿!, 
𝑆𝑅> is characterized by the separation of neutral faces not having occurred (d=0), while the upper rhomb 
of <𝑄𝑅, 𝑇𝑃#|𝑇𝑃!, 𝐺𝑅> is characterized by the separation of neutral faces having occurred (d=1); this 
differentiation accords with a further natural classification of the 𝑃𝑃s. 

Table III: Constituent PPs of each class as generic expressions of facial separation gender [−|0|+]. 

  GR      [−|0|+]      GRCO   
                 

TP+  SR  TP−  [−|0]  [−|+]  [0|+]  TO  SRCO  TC 
                 

PL+  QR  PL−  [−]  [0]  [+]  OH  CO  CB 
                 
  VP      [·]      VP   

 
Although there are 8×7 = 56 combinations of regularly situating a 𝑃𝑇 within another 𝑃𝑇 of its class, both 
with unit length, applying the cubic schema organized according to the key separation of faces evolved 
from the rhombic schema of faces reduces the core–shell combinations to just 12 configurations, whilst 
guaranteeing the consistency of harmonic cellular partition of the interlayer into radial 𝑃𝑅𝑆, 𝑃𝑌𝑅, and 
𝑇𝐹𝑀 spatial elements. 

Referring to the cubic schema shows that the 12 configurations of paired inner & outer 𝑃𝑇s give rise to 
just 12 2-step configurations of 𝑃𝑇 in 𝑃𝑇 in 𝑃𝑇, i.e., 𝑉𝑃→ 𝑃𝑇(→𝑃𝑇$, or 𝑃𝑇(→𝑃𝑇$→𝐺𝑅, discounting 
the skipping of an intermediate 𝑃𝑇 in the progression from 𝑉𝑃 to 𝐺𝑅. Figure 5 shows the 6 possible 3-
step complete sequences that include the source 𝑉𝑃 and the goal 𝐺𝑅; each strand forms a triangular helix 
on the zonahedral cubic schema, and as observed, comprises a −ve, ntrl, & +ve separation of faces, 
according to axis, each strand in different overall order. Figures 6 & 7 show the Class II 𝑉𝑃 → 𝐶𝐵 → 
𝑆𝑅	𝐶𝑂 → 𝐺𝑅	𝐶𝑂 sequence.  
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Figure 5: The six multi-shell expansion strands, i.e., triangular helices (core–shell 1–shell 2–outer shell) 
of Class II in concert, and extracted. Each strand is characterized by 1× −ve, 1× ntrl, & 1× +ve separation 
of faces, in varied order. Clockwise from 1 o’clock: [0|+|−], [+|0|−], [+|−|0], [−|+|0], [−|0|+], [0|−|+]; views 
of schema from below of Figs. 14 & 15 show these helices. Core–multi-shell configurations are then 
formed by arranging the four PTs of each strand concentrically and co-axially (as in Figs. 6 & 7), and 
except 𝑉𝑃 are of unit edge length. Classes I & III of {2,3,3} & {2,3,5} form similar configurations. 
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Figure 6: The Class II 𝑉𝑃 → 𝐶𝐵 → 𝑆𝑅	𝐶𝑂 → 𝐺𝑅	𝐶𝑂 sequence, with [+|−|0] order of separation of faces, 
and unit edge length. Above: 2.5D schema and rotated schema emphasizing the 𝑉𝑃: 𝐶𝐵: 𝑆𝑅𝐶𝑂: 𝐺𝑅𝐶𝑂 
strand. Below: left, interior background multi-shell; center, multi-shell; right: foreground multi-shell. 

 

Figure 7: Class II 𝑉𝑃  → 𝐶𝐵  → 𝑆𝑅	𝐶𝑂  → 𝐺𝑅	𝐶𝑂  sequence Left: 𝑆𝑅  in 𝐺𝑅 ; center, development of 
interlayer web between 𝑆𝑅 and 𝐺𝑅 layers, with 𝑇𝐹𝑀), 𝑇𝐹𝑀*, and 𝑆𝑄 𝑃𝑅𝑆s; right, exploded view. 

A convenient example is the Class II 𝑉𝑃 → 𝐶𝐵 → 𝑆𝑅	𝐶𝑂 → 𝐺𝑅	𝐶𝑂 sequence, characterized as the [+|−|0] 
order of separation of faces, in Fig. 5 lower right, and Fig. 6 top right. In Step 1 of 𝑉𝑃 → 𝐶𝐵, 𝑉# 
separates, while 𝑉! → 𝑆𝑄! and 𝑉" → 𝐸%". In Step 2 of 𝐶𝐵 → 𝑆𝑅	𝐶𝑂, 𝑆𝑄! separates, while 𝐸%" → 𝑁𝑆 and 
𝑉# → 𝑇𝑅%#. In Step 3 of 𝑆𝑅	𝐶𝑂 → 𝐺𝑅	𝐶𝑂, 𝑁𝑆 separates, while 𝑆𝑄! → 𝑂𝐺! and 𝑇𝑅# → 𝐻𝑋#=2f 𝑇𝑅#. 
So in Step 1 of 𝑉𝑃 → 𝐶𝐵, the 8 contracted 𝑉#s separate from coincident to cubic array, forming radials 
of the 𝐶𝐵, as the 6 𝑉!s transform to the 6 𝑆𝑄 pyramids of the cube (of height 1/2); meanwhile, the 12 
𝑉"s extend to 𝐸%"s. In Step 2 of 𝐶𝐵 → 𝑆𝑅	𝐶𝑂, as the 6 contracted 𝑆𝑄!s separate to form 𝑆𝑄 prisms of 
height √2/2, the 8 𝑉#s transform to 𝑇𝑅 pyramids of height √6/6; while the 12 𝐸%"s extrude to 𝑁𝑆s. 
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These form the right gables of half 𝐶𝐵s cut on the √2 axis of height 1/2. Finally, in Step 3 of 𝑆𝑅	𝐶𝑂 → 
𝐺𝑅	𝐶𝑂, as the 12 𝑁𝑆s separate to form 𝑁𝑆 prisms, the 6 expanded 𝑆𝑄!s transform to expanded 𝑂𝐺!s, 
forming a 2𝑆𝑃+! prism with alternating rectangular and isosceles triangular faces between outer base 𝑂𝐺 
and inner top 𝑆𝑄, while the 8 expanded 𝑇𝑅#s transform to expanded 𝐻𝑋s, forming 2𝑆𝑃,# between outer 
𝐻𝑋 and inner 𝑇𝑅. This can be tabulated 𝑉𝑃: 𝐶𝐵: 𝑆𝑅𝐶𝑂: 𝐺𝑅𝐶𝑂, as below: 

Table IV: Class II Core–Multi-shell structure by shell sequence, step, gendered inner and outer face, and 
gendered interlayer all-space-filling prism, pyramid, and truncated pyramidal frustum. 

M
ul

ti -
sh

el
l 

PT
 sh

el
l 

se
qu

en
ce

  Negative Neutral Positive 

St
ep

 

Inner 
𝑃𝑇	

shell 

Inter- 
layer 

𝑃𝑇 shell 

Outer 
𝑃𝑇	

shell 

Inner 
𝑃𝑇	

shell 

Inter- 
layer 

𝑃𝑇 shell 

Outer 
𝑃𝑇	

shell 

Inner 
𝑃𝑇	

shell 

Inter- 
layer 

𝑃𝑇 shell 

Outer 
𝑃𝑇	

shell 

𝑇𝐶:	
𝐶𝑂 

𝐺𝑅𝐶𝑂	
𝑇𝐶:	
𝐶𝑂:	
𝑉𝑃: 

3 𝑂𝐺"− 𝑃𝑅𝑆+− 𝑂𝐺(− 𝐸(" 𝑇𝐹𝑀$
0 𝑆𝑄(" 𝑅𝑇(# 𝑇𝐹𝑀*

+ 𝐻𝑋(# 

2 𝑅𝑆"− 𝑇𝐹𝑀)
− 𝑂𝐺"− 𝑉(" 𝑃𝑌𝑅$" 𝐸(" 𝑅𝑇"# 𝑃𝑅𝑆*+ 𝑅𝑇(# 

1 𝑉"− 𝑃𝑌𝑅)− 𝑅𝑆"− 𝑉"" 𝑃𝑅𝑆(" 𝑉(" 𝑉"# 𝑃𝑌𝑅*# 𝑅𝑇"# 

𝑇𝐶:	
𝐶𝐵 

𝐺𝑅𝐶𝑂	
𝑇𝐶:	
𝐶𝐵:	
𝑉𝑃: 

3 𝑂𝐺"− 𝑃𝑅𝑆+− 𝑂𝐺(− 𝐸(" 𝑇𝐹𝑀$
0 𝑆𝑄(" 𝑅𝑇(# 𝑇𝐹𝑀*

+ 𝐻𝑋(# 

2 𝑆𝑄"− 𝑇𝐹𝑀)
− 𝑂𝐺"− 𝐸"" 𝑃𝑅𝑆$" 𝐸(" 𝑉(# 𝑃𝑌𝑅*+ 𝑅𝑇(# 

1 𝑉"− 𝑃𝑌𝑅)− 𝑆𝑄"− 𝑉"" 𝑃𝑌𝑅%" 𝐸"" 𝑉"# 𝑃𝑅𝑆(# 𝑉(# 

𝑆𝑅 
𝐶𝑂:	
𝐶𝐵 

𝐺𝑅𝐶𝑂	
𝑆𝑅𝐶𝑂:	
𝐶𝐵:	
𝑉𝑃: 

3 𝑆𝑄(− 𝑇𝐹𝑀)
− 𝑂𝐺(− 𝑆𝑄"" 𝑃𝑅𝑆)0 𝑆𝑄(" 𝑇𝑅(# 𝑇𝐹𝑀*

+ 𝐻𝑋(# 

2 𝑆𝑄"− 𝑃𝑅𝑆)− 𝑆𝑄(− 𝐸"" 𝑇𝐹𝑀$
" 𝑆𝑄"" 𝑉(# 𝑃𝑌𝑅*+ 𝑇𝑅(# 

1 𝑉"− 𝑃𝑌𝑅)− 𝑆𝑄"− 𝑉"" 𝑃𝑌𝑅%" 𝐸"" 𝑉"# 𝑃𝑅𝑆(# 𝑉(# 

𝑆𝑅 
𝐶𝑂:	
𝑂𝐻 

𝐺𝑅𝐶𝑂	
𝑆𝑅𝐶𝑂:	
𝑂𝐻:	
𝑉𝑃: 

3 𝑆𝑄(− 𝑇𝐹𝑀)
− 𝑂𝐺(− 𝑆𝑄"" 𝑃𝑅𝑆)0 𝑆𝑄(" 𝑇𝑅(# 𝑇𝐹𝑀*

+ 𝐻𝑋(# 

2 𝑉(− 𝑃𝑌𝑅)− 𝑆𝑄(− 𝐸"" 𝑇𝐹𝑀$
" 𝑆𝑄"" 𝑇𝑅"# 𝑃𝑅𝑆*+ 𝑇𝑅(# 

1 𝑉"− 𝑃𝑅𝑆(− 𝑉(− 𝑉"" 𝑃𝑌𝑅%" 𝐸"" 𝑉"# 𝑃𝑌𝑅*# 𝑇𝑅"# 

𝑇𝑂:	
𝑂𝐻 

𝐺𝑅𝐶𝑂	
𝑇𝑂:	
𝑂𝐻:	
𝑉𝑃: 

3 𝑅𝑆(− 𝑇𝐹𝑀)
− 𝑂𝐺(− 𝐸(" 𝑇𝐹𝑀)

0 𝑆𝑄(" 𝐻𝑋"# 𝑃𝑅𝑆,+ 𝐻𝑋(# 

2 𝑉(− 𝑃𝑌𝑅)− 𝑅𝑆(− 𝐸"" 𝑃𝑅𝑆$" 𝐸(" 𝑇𝑅"# 𝑇𝐹𝑀*
+ 𝐻𝑋"# 

1 𝑉"− 𝑃𝑅𝑆(− 𝑉(− 𝑉"" 𝑃𝑌𝑅%" 𝐸"" 𝑉"# 𝑃𝑌𝑅*# 𝑇𝑅"# 

𝑇𝑂:	
𝐶𝑂 

𝐺𝑅𝐶𝑂	
𝑇𝑂:	
𝐶𝑂:	
𝑉𝑃: 

3 𝑅𝑆(− 𝑇𝐹𝑀)
− 𝑂𝐺(− 𝐸(" 𝑇𝐹𝑀$

0 𝑆𝑄(" 𝐻𝑋"# 𝑃𝑅𝑆,+ 𝐻𝑋(# 

2 𝑅𝑆"− 𝑃𝑅𝑆)− 𝑅𝑆(− 𝑉(" 𝑃𝑌𝑅$" 𝐸(" 𝑅𝑇"# 𝑇𝐹𝑀*
+ 𝐻𝑋"# 

1 𝑉"− 𝑃𝑌𝑅)− 𝑅𝑆"− 𝑉"" 𝑃𝑅𝑆(" 𝑉(" 𝑉"# 𝑃𝑌𝑅*# 𝑅𝑇"# 
   Inner Interlayer Outer In 𝑃𝑇 Interlayer Outer In 𝑃𝑇 Interlayer Outer 

NB: Superscript is gender. Inner/outer 𝑃𝑇 shell subscript is d = 0 or 1; Interlayer 𝑃𝑇 shell subscript is frequency. 
𝑆𝑄% is neutral square (𝑁𝑆). Ntrl 𝑃𝑌𝑅&% is 2f pyramid = radial isosceles 𝑇𝑅; 𝑃𝑅𝑆&% is radial 𝑆𝑄.  

Table V: The 6 generic (above) and Class II (below) multi-shell configurations of the polyhedra. 

MS-I 𝑉𝑃:𝑄𝑅: 𝑇𝑃#: 𝐺𝑅 MS-II 𝑉𝑃: 𝑃𝐿#: 𝑇𝑃#: 𝐺𝑅 MS-III 𝑉𝑃: 𝑃𝐿#: 𝑆𝑅: 𝐺𝑅 
MS-IV 𝑉𝑃: 𝑃𝐿!: 𝑆𝑅!: 𝐺𝑅 MS-V 𝑉𝑃: 𝑃𝐿!: 𝑇𝑃!: 𝐺𝑅 MS-VI 𝑉𝑃:𝑄𝑅: 𝑇𝑃!: 𝐺𝑅 
MS-I 𝑉𝑃: 𝐶𝑂: 𝑇𝑂: 𝐺𝑅𝐶𝑂 MS-II 𝑉𝑃:𝑂𝐻: 𝑇𝑂: 𝐺𝑅𝐶𝑂 MS-III 𝑉𝑃:𝑂𝐻: 𝑆𝑅𝐶𝑂: 𝐺𝑅𝐶𝑂 

MS-IV 𝑉𝑃: 𝐶𝐵: 𝑆𝑅𝐶𝑂: 𝐺𝑅𝐶𝑂 MS-V 𝑉𝑃: 𝐶𝐵: 𝑇𝐶: 𝐺𝑅𝐶𝑂 MS-VI 𝑉𝑃: 𝐶𝑂: 𝑇𝐶: 𝐺𝑅𝐶𝑂 
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Table VI: The six generic multi-shell (MS I−VI) 𝑃𝑃 configurations according to facial separation. 

 0−+ MS−I 
qr·tp+ −0+ MS−II 

pl+·tp+ −+0 M−SIII 
pl+·sr +−0 MS−IV 

pl−·sr +0− MS−V 
pl−·tp− 0+− MS−VI 

qr·tp− 
Shell 3  𝐺𝑅  𝐺𝑅  𝐺𝑅  𝐺𝑅  𝐺𝑅  𝐺𝑅 

gender +  +  0  0  −  −  
Shell 2  𝑇𝑃#  𝑇𝑃#  𝑆𝑅  𝑆𝑅  𝑇𝑃!  𝑇𝑃! 

gender −  0  +  −  0  +  
Shell 1  𝑄𝑅  𝑃𝐿#  𝑃𝐿#  𝑃𝐿!  𝑃𝐿!  𝑄𝑅 

gender 0  −  −  +  +  0  
Shell 0  𝑉𝑃  𝑉𝑃  𝑉𝑃  𝑉𝑃  𝑉𝑃  𝑉𝑃 

 
The differentiation of the configurations into their cellular components requires three forms of frequency 
f: the prism (𝑃𝑅𝑆-); pyramid (𝑃𝑌𝑅-); and truncated pyramidal frustum (𝑇𝐹𝑀-). The frequency f of the 
𝑃𝑅𝑆 and 𝑃𝑌𝑅 is of the base; but Fig. 8 shows the original pyramid before truncation is of that frequency, 
so the frequency f of the 𝑇𝑃𝐹 is of the top (inner 𝑃𝑇 face); this form thus has a base (outer PT face) of 
2f, and alternating sidewalls of rectangles (𝑅𝐺s) and isosceles triangles, prototypes being half of the 𝐶𝑂 
cut at one equatorial plane with base 𝐻𝑋, top 𝑇𝑅, and sidewalls of alternating 𝑆𝑄s and regular 𝑇𝑅s; or 
alternatively, the form between −ve 𝑆𝑄 top of the 𝐶𝐵 and −ve 𝑂𝐺 base of the GR CO, with alternating 
√2/2 rectangular (𝑅𝐺) and 𝑇𝑅 sidewalls. The 𝑃𝑅𝑆 is used for the volumetric element of the separation of 
faces; if it is the 𝑉𝑃 that is separating, then 𝑃𝑅𝑆( is a radial spike, like the radials of the 𝐶𝑂; if the 
(neutral) 𝐸𝐺 is separating, then 𝑃𝑅𝑆$ is a radial 𝑆𝑄. If 𝑉𝑇 is expanding to 𝐸𝐺, then the radial triangle is 
a 𝑃𝑌𝑅$. In the case of the neutral 𝐸𝐺 of the 𝐶𝐵 to 𝑁𝑆 of the 𝑆𝑅𝐶𝑂, the gable form that is formed with 
90° apex angle is recognized as the 2f-𝑇𝑃𝐹$ between 2-gon top and 𝑆𝑄 base, with two √2/2 𝑅𝐺 and two 
isosceles triangular (𝑇𝑅) sidewalls alternating. 

Table VII. Gender & length of interlayer web elements by the separation of faces from 𝑃𝑃 to 𝑃𝑃. 

 𝑉𝑃 𝑂𝐻 𝐶𝑂 𝐶𝐵 𝑇𝑂 𝑆𝑅 𝑇𝐶 𝐺𝑅  

𝐺𝑅     √3
23  1 √2

23   𝐺𝑅 

𝑇𝐶   √3
23  1    −ve 𝑇𝐶 

𝑆𝑅  √3
23   √2

23     ntrl 𝑆𝑅 

𝑇𝑂  1 √2
23      +ve 𝑇𝑂 

𝐶𝐵 √3
23      −ve ntrl  𝐶𝐵 

𝐶𝑂 1    −ve  +ve  𝐶𝑂 

𝑂𝐻 √2 23     ntrl +ve   𝑂𝐻 

𝑉𝑃  −ve ntrl +ve     𝑉𝑃 

 𝑉𝑃 𝑂𝐻 𝐶𝑂 𝐶𝐵 𝑇𝑂 𝑆𝑅 𝑇𝐶 𝐺𝑅  
 
For unit core–shell pairs: Above left, length of interlayer web elements; top header, inner 𝑃𝑃; left header, outer 𝑃𝑃. 
Below right, gender of separation of faces; right header, inner 𝑃𝑃, bottom header, outer 𝑃𝑃. For each 𝑃𝑅𝑆, 𝑃𝑌𝑅, & 
𝑇𝐹𝑀, for unit length inner and outer 𝑃𝑃s, the web edges connecting the two 𝑃𝑃s are of equal length of √2/2, 1, or 
√3/2, dependent on the −ve, ntrl, or +ve separation of faces. 
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Bold arrows show 
separation of faces, 
with constant values 
of increase in in-radii 
given in double-line 
boxes, representing the 
height, so axial edge, of 
𝑃𝑅𝑆. 𝑃𝑃 named at right, 
gendered face 𝐹 at left; 
boxed equation is in-
radius. 𝑃𝑅𝑆 spans 
between same face type 
on inner & outer 𝑃𝑃. 

 ↗= +
√2
2   

1
2 (3 + √2)  ↖= +

1
2 

 Light arrows of the other 
two axes also reveal 

constant increases, with 
values given in unboxed 

equations, represent 
axial height of the 

relevant 𝑃𝑌𝑅 or 𝑇𝐹𝑀. 
𝑃𝑌𝑅 spans 𝑉𝑇 on inner 
𝑃𝑃 to 𝑃𝑇 on outer 𝑃𝑃; 
𝑇𝐹𝑀 spans 𝑃𝑇 on inner 
𝑃𝑃 to the next 𝑃𝑇 on the 
rhombic schema, on the 

outer 𝑃𝑃. 

   
NS

  
GR

    

 
3
2  

1
2 (1 + √2)  

1
2 (2 + √2)  

 NE+

  
TO

  
NS

 
SR

  
NE−

  
TC

 
 

 
1
2  1  

√2
2   

 NE+

 
OH

  
NV

  
CO

  
NE−

 
CB

 
 

 ↑ ∆%= 1  0  NEUTRAL  

   NV VP    
CLASS II INRADII  

           

↗= +
1
2  

1
2 (1 + 2√2)  ↖= +

√2
2   ↗= +

√3
2   

√3
2 (1 + √2)  ↖= +

√6
6  

  
OG

  
GR

      
HX

  
GR

   

√2  
1
2 (1 + √2)  

1
2 (1 + √2)  

√6
2   

√3
6 (3 + √2)  

√3
6 (3 + 2√2) 

RS
  

TO
  

SQ
 

SR
  

OG
  

TC
  

HX
  

TO
  

TR
 

SR
  

RT
  

TC
 

√2
2   

√2
2   

1
2  

√6
6   

√6
3   

√3
2  

VT
 

OH
  

RS
  

CO
  

SQ
 

CB
  

TR
 

OH
  

RT
  

CO
   

VT
 

CB
 

↑= +
√2
2   0  NEGATIVE  ↑= +

√6
3   0  POSITIVE 

  VT VP      VT VP   

Above: Inradii of 𝑃𝑃s for the −ve, ntrl, & +ve separation of faces (bold arrows, double-line boxes). 
Circumradii, which do 
not show constant 
increase by axis.  
From the initial 
progressions from 𝑉𝑃 to 
𝑂𝐻, 𝐶𝑂, & 𝐶𝐵, all other 
radii can be found by 
cyclic calculation of 
circumradius → inradius 
→ different gender 
inradius → circumradius 
→ different 
circumradius. 

   
1
2
713 + 6√2    

All inradii (above) and 
circumradii (left) are 

constructible numbers. 
The regularity of this 

order as evident in the 
constant increases of 

inradii on each axis 
further validates the 
2.5D cubic schema. 

Similar relations apply 
to the other classes of 
polyhedra, and might 

be extended to the 
2D tessellations. 
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CLASS II CIRCUMRADII 

Figure 8: Radii of the Class II PPs according to the cubic & rhombic schema & separation of faces. 
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To illustrate the integrity of this system, the 𝑇𝑂 − 𝐺𝑅 interlayer, at top left of Fig. 13 (front view of the 
cubic schema), consists of 4f β-𝑇𝐹𝑀s on the −ve axes, 2f α-𝑇𝐹𝑀s (gables) on the ntrl axis, and 6f 2-
𝑃𝑅𝑆s on the +ve (𝑆𝑜𝐹) axis as in Fig. 15 (view of the schema from below); Fig. 8 above shows that these 
are of height 1/2, √2/2, and √3/2, respectively, all with inclined edge length of √3/2, unit base edge length, 
and for 𝑇𝐹𝑀, unit top edge length. So the various geometries are practical to work with. To clarify, for 
any given interlayer of the 12 possibilities, the web lengths are equal, and derivable from whether this 
represents a −ve, ntrl, or +ve 𝑆𝑜𝐹; the heights of the three kind of elements in general differ by gender 
of axis of the interlayer structure, and can be obtained from Fig. 8; and the geometry of the element is 
thus determined. 

The generic configuration of the core–shell structure is thus characterized by just three kinds of polytopes 
(Fig. 9) that occupy the interlayer spaces between concentric 𝑃𝑃s: the (0, α or β, or 2) prism (𝑃𝑅𝑆) 
generated by the separating set of faces by gender of −ve, ntrl, or +ve; the (α or β) pyramid (𝑃𝑌𝑅) between 
𝑉𝑇 apex and α or β base face; and the (α or β) truncated frustum of pyramid, the Truncated Pyramidal 
Frustum (𝑇𝐹𝑀; the ‘second’ truncation occurring after the first truncation of the pyramid to form the 
frustum, Fig. 10), where the smaller base is the α or β face of the inner 𝑃𝑃, the larger base is the 2f face 
of the outer 𝑃𝑃, the frequency of the 𝑇𝐹𝑀 is characterized as the corresponding α or β (the frequency of 
the original 𝑃𝑌𝑅 before first or second truncation, which equals the frequency of the 𝑇𝐹𝑀 top=smaller 
base), and the side walls of the 𝑇𝐹𝑀  are alternating isosceles triangles and rectangles. Within the 
interlayer, the rectangular face of the 𝑇𝐹𝑀 is also the side face of the corresponding adjacent prism, while 
the isosceles triangle of the 𝑇𝐹𝑀 is also the side face of the corresponding adjacent pyramid. Each 𝑃𝑅𝑆, 
𝑃𝑌𝑅, and 𝑇𝐹𝑀 radiates from the core along a main symmetry axis of the concentric 𝑃𝑃s, its main axis 
being colinear with the symmetry axis. The 0:𝑃𝑅𝑆 is a radial edge, a spike from 𝑉𝑃=𝑉𝑇 to 𝑉𝑇, so may 
be regarded as the prismatic development of the 1-gon 𝑉𝑇, 𝑃𝑅𝑆(. The edge prism, 𝑃𝑅𝑆$, is a radial 
rectangle, as the prismatic development of the 2-gon edge of the d=0 𝑁𝐸 of the inner 𝑃𝑇 to the d=1 𝑁𝐸 
of the outer PT. The 2-gon pyramid, 𝑃𝑌𝑅$, is an isosceles triangle from apex 𝑁𝑉 to base 𝑁𝐸. 

The core–multi-shell configurations are then simply built up by combining sheaths of the different core–
shell structures, according to the zonahedral cubic schema and the strands of the triangular helical 
progressions abstracted in Fig. 5. Each interlayer of the core–multi-shell is accordingly differentiated into 
𝑃𝑅𝑆, 𝑃𝑌𝑅, and 𝑇𝐹𝑀 elements, and these combine to fill the interlayer space. By proceeding from the 
cubic schema, the geometry is consistently harmonic, and facile to work with, once the general principles 
are understood.  

Kindly note that my approach is that of an experimental geometer and independent scholar. I have been 
unable to determine whether these forms have been previously discovered and reported according to any 
comparable schema, but this work is essentially the result of independent investigation of the polyhedral 
forms in themselves, whether as isolated forms, familial members, or periodic arrays of the honeycombs; 
not in what others have reported. This is original and ongoing work, and continually being refined. The 
combination of the rhombic schema, cubic schema, inclusion of the 𝑉𝑃, consideration of principial faces, 
and recognition of the consistency of behavior across classes of different symmetry provides a highly 
accessible and imaginable framework for the spatial designer to compose geometric configurations that 
may be realized as real structure, as well as providing a suitable context for further research. 
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Figure 9A: Class II interlayer web elements for the neutral separation of faces, in which all edges are of 
unit length. Top strata: Negative elements; middle strata: neutral elements; bottom strata: positive 
elements. Prisms. Columns 1 & 2: 0-dimensional α & β 𝑃𝑅𝑆s. Cols. 3 & 4: α & β 𝑃𝑅𝑆s, respectively; 
neutral is edge 𝑃𝑅𝑆. Col. 5: 2-frequency 𝑃𝑅𝑆s.  
 
In the first interlayer from 𝑉𝑃 to 𝑃𝐿!, 𝑄𝑅, or 𝑃𝐿#, the separating −ve, ntrl, or +ve 𝑉𝑇s (only one set per 
case) form 0-𝑃𝑅𝑆(s from adjoining d=0 to adjacent d=1 configuration, so form a cluster of virtual spikes 
from the center (like spicules). Adjacent radials/𝑃𝑅𝑆(s may also form the pair of equal length edges of 
the radial 2-gon (flat) 𝑃𝑌𝑅$. Those isosceles triangles also form the faces of the other kind of pyramid.  
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Figure 9B: 𝑃𝑌𝑅s and 𝑇𝐹𝑀s. Cols. 1 & 2: α & β 𝑃𝑌𝑅s, respectively; neutrals are 2-gon edge 𝑃𝑌𝑅s. Cols. 
3 & 4: α & β 𝑇𝐹𝑀s, respectively. Top 𝑉𝑇, 𝐸𝐺, or 𝑃𝐺 is of inner 𝑃𝑃; Base 𝑉𝑇, 𝐸𝐺, or 𝑃𝐺 is of outer 𝑃𝑃. 
Furthermore, the interlayer webs for the −ve, ntrl, and +ve separation of faces each have −ve, ntrl, and 
+ve elements. For the −ve separation of faces, both the axial edges of 𝑃𝑅𝑆 and the inclined edges of 𝑃𝑌𝑅 
and 𝑇𝐹𝑀 are √2/2; for the +ve separation of faces, they are √3/2. In all cases, the base edge lengths, and 
for the 𝑇𝐹𝑀 s, the top edge lengths, are of unit length, as facial 𝑃𝑇 s of the inner or outer 𝑃𝑃 s 
characterizing the specific core–shell or shell–shell interlayer. 
 
Adjacent pairs of 𝑉("s on the 𝑄𝑅 form the edges of the base triangles and squares of the component +ve 
and −ve radial β 𝑃𝑌𝑅s, respectively of the interlayer. In the 𝑉𝑃–𝑃𝐿! interlayer, 𝑉"#s project to form 𝑃𝑅𝑆( 
spikes; 𝑉"!s project to form 𝑃𝑌𝑅)s; and 𝑉""s project to form flat isosceles triangular β-𝑃𝑌𝑅$s. In the 𝑉𝑃–
𝑃𝐿# interlayer, 𝑉"!s project to form 𝑃𝑅𝑆( spikes; 𝑉"#s project to form 𝑃𝑌𝑅*s; and 𝑉""s project to form 
flat isosceles triangular α-𝑃𝑌𝑅$s. In the three interlayer cases 𝑉𝑃–𝑃𝐿!, 𝑉𝑃–𝑄𝑅, and 𝑉𝑃–𝑃𝐿#, the +ve, 
ntrl, and −ve 𝑉𝑇s project to 𝑃𝑅𝑆(# spikes, 𝑃𝑅𝑆("s, and 𝑃𝑅𝑆(!s, around which 0-𝑃𝑌𝑅"s and α-𝑃𝑌𝑅!s, β-
𝑃𝑌𝑅!s and β-𝑃𝑌𝑅#s, and α-𝑃𝑌𝑅#s and 0-𝑃𝑌𝑅"s cluster, respectively. 
  



European Journal of Applied Sciences (EJAS)      Vol. 11, Issue 1, January-2022 

Services for Science and Education – United Kingdom 
 

110 

 

 

Figure 10. Schematic of the truncations of the parent 3f α- & β-𝑃𝑌𝑅 to gain 3f α- & β-𝑇𝐹𝑀, and 4f α-
𝑃𝑌𝑅 to gain 4f α-𝑇𝐹𝑀: 𝑇𝑅:𝐻𝑋 for left, α; right, β 𝑇𝑅 upper base, and center, 𝑆𝑄:𝑂𝐺 for 𝑆𝑄 upper base. 
A similar process applies for Class II ntrl 2f, +ve 3f, and −ve 4f faces; also in Class I & III. In all cases, 
𝑇𝐹𝑀 sidewalls alternate rectangles (𝑅𝐺) and isosceles triangular (𝑇𝑅) faces between inner α|β and outer 
2α|2β faces of the rhombic schema (vertical dimension indicative only). 
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Figure 11. Class II library. Top, Prisms (𝑃𝑅𝑆s): Upper, 𝑃𝑅𝑆(", 𝑃𝑅𝑆$%, 𝑃𝑅𝑆*%, 𝑃𝑅𝑆)%, 𝑃𝑅𝑆,$; lower: 𝑃𝑅𝑆+$; 
𝑃𝑅𝑆)

& , 𝑃𝑅𝑆*
& , 𝑃𝑅𝑆$

& . Middle, Pyramids (𝑃𝑌𝑅s): Upper, 𝑃𝑌𝑅$% , 𝑃𝑌𝑅*% , 𝑃𝑌𝑅)% ; Lower, 𝑃𝑌𝑅)
& , 𝑃𝑌𝑅*

& , 
𝑃𝑌𝑅$

& . Bottom, Truncated Pyramidal Frusta (𝑇𝐹𝑀s; cupola): Upper, 𝑇𝐹𝑀$
% , 𝑇𝐹𝑀*

% , 𝑇𝐹𝑀)
% ; lower: 

𝑇𝐹𝑀+
$; 𝑇𝐹𝑀)

&, 𝑇𝐹𝑀*
&. Top (cyan) is of inner 𝑃𝑇; outer base of 𝑃𝑅𝑆$

%|& & 𝑃𝑌𝑅$
%|& is shown as dark blue. 

Vertical dimension indicative only; height of element varies by schema axis, as in Fig. 8.  
 

  



European Journal of Applied Sciences (EJAS)      Vol. 11, Issue 1, January-2022 

Services for Science and Education – United Kingdom 
 

112 

 

 

Figure 12: Class II 𝑃𝑅𝑆, 𝑃𝑌𝑅, and 𝑇𝐹𝑀 interlayer components. Top, 𝑃𝑅𝑆; middle, 𝑃𝑌𝑅; bottom, 𝑇𝐹𝑀. 
𝑃𝑅𝑆( represents 𝑉𝑃: 𝑉𝑃; 𝑃𝑅𝑆$ is 𝐸𝐺: 𝐸𝐺 (d=0 to 1). 𝑃𝑌𝑅 apex is inner facial 𝑉𝑇; base is face of outer 
shell; 𝑃𝑌𝑅$ is 𝑁𝑉:𝑁𝐸. 𝑇𝐹𝑀 small base is face of inner shell, large base is of outer shell; 𝑇𝐹𝑀$ (gable) 
is ntrl 𝑁𝐸:𝑁𝑆. Upper left text indicates whether characteristic base is 0, α|β, or 2 frequency face, by the 
author’s rhombic schema of faces (Fig. 1) [4]; lower right shows frequency = symmetry, where 𝑇𝐹𝑀 f is 
top base = face of inner shell (Figs. 13 & 14). Cyan, –ve; yellow, ntrl; magenta, +ve. 
 
Figure 13 shows the front horizontal view of the cubic schema, situating the large 12 core–shell 
configurations at the mid-edges between the corresponding pair of small inner and outer PPs. The bilateral 
symmetry of complements becomes apparent about the vertical axis of the figure, e.g., of +ve/−ve & 
−ve/+ve 𝑃𝑌𝑅; +ve/−ve & −ve/+ve 𝑃𝑅𝑆; +ve/−ve & −ve/+ve α- or β-TFM; and ntrl 2-𝑃𝑌𝑅 (𝑇𝑅), 2-𝑃𝑅𝑆, 
2-𝑇𝐹𝑀; as well as the d=0 to d=1 separations on 3 axes of cells. 
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Figure 13A: Class II horizontal ‘front’ view 2.5D schema of interlayer components between inner and 
outer 𝑃𝑃s, with 𝐶𝑂 (nearest) and 𝑆𝑅 (furthest, obscured) at center; 𝐺𝑅 at top of figure, 𝑉𝑃 at bottom. 
Note the bilateral ‘symmetry’ of complements about the vertical axis 𝐺𝑅–𝑉𝑃 of ntrl elements of two 
kinds or orientation, in this paper where the neutral elements are denoted α|β, α being the case for the 
𝑂𝐻/𝑇𝑂, β for the 𝐶𝐵/𝑇𝐶 (while for the −ve & +ve elements, α is given by the case for the 𝑂𝐻/𝐶𝐵, while 
β is given by the case for the 𝐶𝑂). Also, the complementary 𝑃𝑅𝑆 & 𝑃𝑌𝑅 and vice versa (bottom rhomb); 
𝑃𝑌𝑅  & 𝑇𝐹𝑀  horizontal and 𝑃𝑌𝑅:𝑃𝑌𝑅  & 𝑇𝐹𝑀:𝑇𝐹𝑀  vertical (middle rhomb); and 𝑃𝑅𝑆 & 𝑇𝐹𝑀  and 
vice versa (top rhomb); hence the subtlety of the 2.5D schema that can visualize from the horizontal 
‘front’ the 2-fold, and in Fig. 14, the view from below of 3-fold complementary symmetry, as well as 3D 
morphology. 
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Figure 13B. Partial formation of the Class II horizontal ‘front’ view 2.5D schema of interlayer 
components between inner and outer 𝑃𝑃s. Here, two each of the −ve, ntrl, & +ve elements are shown. In 
some cases, radial elements are shown as rods; in some other cases, faces of one gender are obscured by 
faces of another. 
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Figure 14. Left: Class II view from below of the cubic schema of interlayer 𝑃𝑇s between 𝑃𝑃s, with 𝑉𝑃 
(nearest) & 𝐺𝑅 (furthest) at center; cube seems inverted. Outward radial transformations start from 𝑉𝑃; 
inward radial transformations culminate in 𝐺𝑅. All interlayer 𝑃𝑇s are radial, coaxial 𝑃𝑅𝑆, 𝑃𝑌𝑅, or 𝑇𝐹𝑀, 
fill the interlayer space; again, note the overall 2- & 3-fold complementary symmetry. 
 
Figures 14 and 15 show the view from below, with 𝑉𝑃 (nearest) and 𝐺𝑅 (furthest) at center, while Fig. 
15 shows how the 𝑃𝑃 s progress through the various strands of development of the relevant 
transformation/ triangular helix (see Fig. 5). 
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Figure 15. Right: Class II view from below of the triangular helices of sequence of faces of 𝑃𝑃s and 
interlayer spatial cells in the cubic schema for +ve (left), ntrl (center), and −ve (right) faces with α|β 
symmetry about −120°, 0° vertical, and +120° axes, respectively. Helices start with 𝑃𝑅𝑆 (𝑆) or 𝑃𝑌𝑅 (𝑌), 
end with 𝑆 or 𝑇𝐹𝑀 (𝑀), with 𝑆: 𝑌:𝑀, 𝑌: 𝑆:𝑀, & 𝑌:𝑀: 𝑆 patterns in equal proportions. 

Both Figs. 14 and 15 integrate the 0, α | β, and 2 rhombic schema of faces that I have described in the 
companion paper to this in this journal issue [4], which work preceded this, and elsewhere [11, 12] (Fig. 
1). Faces evolve as the 𝑃𝑃s progress in the cubic schema, from those of 𝑉𝑃 to those of 𝐺𝑅 (see also Figs. 
3 & 4).  
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Figure 16. Class II horizontal ‘front’ view of cubic schema of interlayer components between core and 
shell, without inner core 𝑃𝑃, with 𝐶𝑂 (nearest) and 𝑆𝑅 (furthest) at center. These might be treated as 
linee occulte, and used to configure molecular engineering, nanostructure architecture, or dynamic 
structure for architecture, space structures, deployable structures etc. 
 
  

CO

SR



European Journal of Applied Sciences (EJAS)      Vol. 11, Issue 1, January-2022 

Services for Science and Education – United Kingdom 
 

118 

 

 

Figure 17: Class II front view with triplet of interlayer components, one of each gender, of cyan, magenta, 
yellow. Radial 𝑃𝑅𝑆 s are shown as spikes of gender color. Obscured faces shown as overlay of 
corresponding two colors of 50 % opacity: magenta over yellow shows as orange, yellow over cyan as 
green, magenta over cyan as dark grey. Within each triplet, web lengths are constant. 
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4.   CONCLUSION  

In this paper, I develop the 2.5D cubic schema of polyhedra and the rhombic schema of faces that I have 
previously advanced to recognize potential core–shell and core–multi-shell configurations of potential 
relevance to nanoarchitecture, whereby the choice of consecutive 𝑃𝑃s delineating the order is constrained 
by the separation of faces to be 𝑃𝑃s that share an edge of the 2.5D cubic schema. These are located 
concentrically, with coaxial symmetry axes and common edge length. The interlayer space is then 
regularly divided into all-space filling radial prisms, pyramids, and truncated pyramidal frusta (cupolae), 
which are described for Class II of {2,3,4} symmetry. The inradii of the 𝑃𝑃s show constant increases 
according to schema axis, which greatly facilitate geometric analysis and composition. The principles 
apply also to Class I of {2,3,3} and Class III of {2,3,5} symmetry of the polyhedra; it is anticipated to 
extend the treatment to include Classes IV and V of the polygonal tessellations. Core–multi-shell 
configurations are also developed, the core–shell configurations being simply subsets of these. The 
regularity and harmonic order of these configurations is guaranteed by, and further validates the cubic 
schema of polyhedra, and the rhombic schema of faces previously advanced. These are based on the order 
of space that I have evolved as an experimental geometer, whereby only certain elements of the polyhedra 
are regarded as principial, being those that are normal to the symmetry axes. Principial faces may 
meaningfully consist of 0D vertices or 1D edges, as well as 2D polygons. The order recognizes a key 
virtual 0D Verticial Polytope (𝑉𝑃) as one of the eight Primary Polyhedra (𝑃𝑃s) of each class. The 
separation of faces seems key to understanding the morphology, and in a sense, cosmogony, of the 
polyhedra. These various core–shell and core–multi-shell configurations and their harmonic 
interrelationship might find use as linee occulte in composing various spatial configurations and their 
dynamic transformations in a variety of fields, which include molecular engineering, nanoarchitecture, 
biochemistry, biomedical scaffolds, metamaterials, deployable space structures, and in gaining a deeper 
appreciation of the extraordinary harmonic potential of empirical space. 

*** 
Nomenclature: 	∗, colored ● Class I 3D: 𝑂𝐻∗ = tetra-tetrahedron (𝑇𝑅: 𝑇𝑅); 𝐶𝑂∗ = 𝑆𝑅	𝑇𝑅: 𝑇𝑅; 𝑇𝑂∗ = 
𝐺𝑅	𝑇𝑅: 𝑇𝑅 ● Class II 3D: 𝑂𝐻, octahedron; 𝐶𝑂, cuboctahedron; 𝐶𝐵, cube; 𝑇𝑂, truncated octahedron; 
𝑆𝑅𝐶𝑂, small rhombic cuboctahedron; 𝑇𝐶, truncated cube; 𝐺𝑅𝐶𝑂, great rhombic cuboctahedron ● Class 
III 2D: 𝐷𝐺, decagon (10-gon); 𝑃𝑁, pentagon; 𝑅𝑃, rotated pentagon ○ Class III 3D: 𝐷𝐶, dodecahedron; 
𝐺𝐼𝑅𝐷, great rhombic icosidodecahedron; 𝐼𝐶, icosahedron; 𝐼𝐷, icosidodecahedron; 𝑆𝑅𝐼𝐷, small rhombic 
icosidodecahedron; 𝑇𝐷,  truncated (trunc.) dodecahedron; 𝑇𝐼,  trunc. icosahedron ● Class IV 2D: 
Component arrays: 𝑣𝑡, verticial; 𝑡𝑟, triangular; ℎ𝑥, hexagonal; 𝑟𝑡, rotated (trunc.) triangular; 𝑟𝑥, rotated 
(trunc.) hexagonal; 2𝑡, 2f triangular (hexagonal); 2𝑥, 2f hexagonal (dodecagonal) ○ Combined arrays 
(+ve:−ve): 𝑣𝑡: 𝑣𝑡,  verticial:verticial; 𝑡𝑟: 𝑣𝑡,  triangular:verticial; 𝑣𝑡: ℎ𝑥,  verticial:hexagonal; 𝑟𝑡: 𝑟𝑥, 
rotated (trunc.) triangular:rotated hexagonal; 2𝑡: 𝑟𝑥, hexagonal (2f triangular):rotated (trunc.) hexagonal; 
𝑟𝑡: 2𝑥, rotated (trunc.) triangular:2f hexagonal (dodecagonal); 𝑡𝑟: ℎ𝑥 = 𝑆𝑅	𝑡𝑟: ℎ𝑥, triangular:hexagonal; 
2𝑡: 2𝑥,  2f triangular:2f hexagonal (hexagonal: dodecagonal) ● Class V 2D Component arrays: 𝑣𝑡, 
verticial; 𝑠𝑞,  square; 𝑛𝑠 , neutral square; 𝑟𝑠,  rotated (trunc.) square; 2𝑠,  2f square (octagonal). ○ 
Combined arrays (+ve:−ve): 𝑣𝑡: 𝑣𝑡,  verticial:verticial; 𝑠𝑞: 𝑣𝑡,  square:verticial; 𝑣𝑡: 𝑠𝑞,  verticial:square; 
𝑟𝑠: 𝑟𝑠, rotated (trunc.) square:rotated (trunc.) square; 2𝑠: 𝑟𝑠, octagonal (2f square):rotated (trunc.) square; 
𝑟𝑠: 2𝑠,  rotated (trunc.) square:2f square (octagonal); 𝑠𝑞: 𝑠𝑞  = 𝑆𝑅	𝑠𝑞: 𝑠𝑞,  square:square; 2𝑠: 2𝑠  = 
𝐺𝑅	𝑠𝑞: 𝑠𝑞, 2f square:2f square = 𝑂𝐺:𝑂𝐺 ● Generic: −ve, negative; ntrl, neutral; +ve, positive; 𝑉, 𝑉𝑇, 
vertex; 𝑉𝑃, verticial polytope; 𝑁𝑉, neutral vertex; 𝐸, 𝐸𝐺, edge; 𝑁𝐸, neutral edge; 𝐹, face; 𝑃𝐺, polygon; 
𝑃𝑇, polytope; 𝑁𝑆, neutral square; 𝑃𝑅𝑆, prism; 𝑃𝑌𝑅, pyramid; 𝑆𝑜𝐹, separation of faces; 𝑇𝐹𝑀, truncated 
pyramidal frustum (cupola) ■ 
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