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ABSTRACT 

In previous work, inspired by Critchlow [1], and by Grünbaum & Shephard [2], I proposed 
an integral 2.5D cubic schema of the regular and semi-regular polyhedra and polygonal 
tessellations of the plane for each class of symmetry, which could be differentiated into an 
upper and lower layer of 4 polytopes each, and characterized by corresponding pairs, so that 
upper polytope always corresponds to lower [3]. I explored the motif of paired two-step 
sequences of first alternating facial separation and morphological transformation, and 
second facial morphological transformation and separation, which in the 2D consideration 
of the 2.5D schema are disposed about the vertical axis, as characterized by the 
correspondence between the PPs of the lower and upper squares (diamonds or rhombi). 

Following sustained research [3−11], I here focus on a deeper pattern of morphological 
transformation of the primary prototypes that is characterized by the separation of one 
gendered set of the negative (–ve), neutral (ntrl), or positive (+ve) facial polytopes along the 
Y, Z, & X axes of the cubic schema. As one set of faces separates, the other two sets morph/ 
project if polar/neutral, through null→regular or quasi-regular→double facial levels 
(0→α|β→2) of the rhombic schema or its reflection. Each facial set separates just once: 
d=0→1. The cubic schema reveals significant three-fold symmetry by gender. The 
separation of faces provides an adequate schema for the morphology of the three classes of 
the regular and semi-regular polyhedra of {2,3,3}, {2,3,4}, and {2,3,5} symmetry, and two 
classes of polygonal tessellations (tilings) of {2,3,6} and {2,4,4} symmetry. (Kindly refer to 
Nomenclature at the end of paper). 
 
Key words: polyhedra, tessellations, morphology, separation of faces 
 
 

1.   PAIRING OF POLYHEDRA BY THE SEPARATION OF FACES: CLASS II & GENERIC 

The pairings of polyhedra within any one class can be characterized by the separation of one set of the 
negative, neutral, or positive surface polytopes on the Y, Z, or X axes, respectively, of the 2.5D schema, 
as in Fig. 1. Therefore, three significant kinds of pairings of 𝑃𝑃s can be made in the 2.5D schema, 
dependent on the schema orthogonal axis. For descriptive convenience, this is described for Class II of 
{2,3,4} symmetry, where the −ve, neutral, and +ve axes of the class, and thus of each of its individual 
polytopes, are conveniently the √1, √2, and √3 (100, 110, 111) axes of the cube, respectively. 
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This class is of 3D polyhedra, and the +ve and −ve polar polytopes take different forms (unlike Class I 
of 3D polyhedra, where the polar polytopes take the same form of the tetrahedron, though in alternative 
orientation, or Class V of 2D polygons, where both polar polytopes also take the same form of the square, 
but in different location). In the other classes, the symmetry axes are not in general orthogonal; in 
addition, Class II (leaving aside the transitional Snub form) precisely constitutes the 𝑃𝑃s of the Class III 
honeycombs, so are the primary components of the Class III honeycomb periodic all-space-filling arrays. 
Subsequently, I compare this Class II with Class IV, to illustrate the differences between 3D polyhedral 
and 2D polygonal form, while considering classes with different polar polytopes, as opposed to having 
the same, but reoriented (3D) or relocated (2D) form. Contemplation of Fig. 1 reveals the beautiful 
integrity of interrelationship: 

 

Fig. 1: Pairings of the Class II polyhedra according to −ve (left), ntrl (upper), or +ve (right) faces, which 
separate from adjoining (sharing a V or E) to adjacent by distance unit 1 = edge length. CB and OH are 
considered the −ve and +ve polar polytopes, respectively, with facial PTs shown as −ve (cyan) & +ve 
(magenta), respectively, with ntrl polytopes are shown in yellow, or thick black edge. 
  

XY

Z
√1 negative faces

separate by 1,
PPs paired by Y-axis

√3 positive faces
separate by 1,

PPs paired by X-axis

2.5D Polyhedra
Schema Class II

√2 neutral faces
separate by 1,

PPs paired by Z-axis



Meurant, R. C. (2023). The Morphology of the Regular & Semi-Regular Polyhedra and Tessellations  
According to the Separation of Facial Polytopes. European Journal of Applied Sciences, 11(1). 147–167.	

URL: http://dx.doi.org/10.14738/aivp.106.13776 
 

149 

 

Table I. Separating PP pairs for Class II and their source and goal polytopes. 

 Negative   Neutral   Positive  
Separating 
facial 𝑃𝑇s 

Source 
polytope 

Goal 
polytope 

Separating 
facial 𝑃𝑇s 

Source 
polytope 

Goal 
polytope 

Separating 
facial 𝑃𝑇s 

Source 
polytope 

Goal 
polytope 

𝑉! 𝑉𝑃" 𝑂𝐻 𝑉# 𝑉𝑃" 𝐶𝑂 𝑉$ 𝑉𝑃" 𝐶𝐵 
𝑆𝑄! 𝐶𝐵 𝑆𝑅𝐶𝑂 𝐸%# 𝑂𝐻 𝑇𝑂 𝑇𝑅$ 𝑂𝐻 𝑆𝑅𝐶𝑂 
𝑅𝑆! 𝐶𝑂 𝑇𝑂 𝐸&

# 𝐶𝐵 𝑇𝐶 𝑅𝑇$ 𝐶𝑂 𝑇𝐶 
𝑂𝐺! 𝑇𝐶 𝐺𝑅𝐶𝑂 𝑆𝑄# 𝑆𝑅𝐶𝑂 𝐺𝑅𝐶𝑂 𝐻𝑋$ 𝑇𝑂 𝐺𝑅𝐶𝑂 

 

NB. In this paper, I modify my previous conventions, so Vertex 𝑉𝑇 → 𝑉; neutral vertex 𝑁𝑉 → 𝑉!; edge 𝐸𝐺 → 𝐸, 
neutral edge 𝑁𝐸 → 𝐸!; neutral square 𝑁𝑆 → 𝑆𝑄!; Facial polytope → 𝐹; on-axis 0D 𝑉! (the 1-gon, of 1 𝐸 & 1 𝑉!) 
& 1D 𝐸! (the 2-gon, of 2 𝐸 & 2 𝑉!), & 2D polygons (𝑇𝑅, 𝐻𝑋, 𝑆𝑄, …), are considered 𝐹; see Nomenclature at end.  

On the Y-axis of the schema (going leftwards), negative faces separate (cyan; lower left). Adjoining 
(coincident) 𝑉!s of the 𝑉𝑃 separate to adjacent 𝑉!s of the 𝑂𝐻 (its nodes); adjoining 𝑆𝑄!s of the 𝐶𝐵 
separate to adjacent 𝑆𝑄!s of the 𝑆𝑅𝐶𝑂; adjoining 𝑅𝑆!s of the 𝐶𝑂 separate to adjacent 𝑅𝑆!s of the 𝑇𝑂; 
and adjoining 𝑂𝐺!s of the 𝑇𝐶 separate to adjacent 𝑂𝐺!s of the 𝐺𝑅𝐶𝑂. In each case, adjoining pairs of 
negative polytopes of a 𝑃𝑃 that share a 𝑉# or 𝐸# separate by edge length unit distance 1 to adjacent 
negative polytopes of its 𝑃𝑃 pair. 

On the Z-axis of the schema (going upwards), neutral faces separate (yellow; upper). Adjoining 
(coincident) 𝑉#s of the 𝑉𝑃 separate to adjacent 𝑉#s of the 𝐶𝑂 (its nodes); adjoining 𝐸#s of the 𝑂𝐻 
separate to adjacent 𝐸#s of the 𝑇𝑂; adjoining 𝐸#s of the 𝐶𝐵 separate to adjacent 𝐸#s of the 𝑇𝐶; and 
adjoining 𝑆𝑄#s of the 𝑆𝑅𝐶𝑂 separate to adjacent 𝑆𝑄#s of the 𝐺𝑅𝐶𝑂. In each case, adjoining pairs of 
neutral surface polytopes of a 𝑃𝑃, sharing a 𝑉 or 𝐸 that need not be +/0/−ve, e.g., of 𝑆𝑅𝐶𝑂, separate by 
d=1 to adjacent neutral 𝐹s of its 𝑃𝑃 pair. 

On the X-axis of the schema (going rightwards), positive faces separate (magenta; lower right). Adjoining 
(coincident) 𝑉$s of the 𝑉𝑃 separate to adjacent 𝑉$s of the 𝐶𝐵 (its nodes); adjoining 𝑇𝑅$s of the 𝑂𝐻 
separate to adjacent 𝑇𝑅$s of the 𝑆𝑅𝐶𝑂; adjoining 𝑅𝑇$s of the 𝐶𝑂 separate to adjacent 𝑅𝑇$s of the 𝑇𝐶; 
& adjoining 𝐻𝑋$s of the 𝑇𝑂 separate to adjacent 𝐻𝑋$s of the 𝐺𝑅𝐶𝑂. In each case, adjoining pairs of 
positive polytopes of a 𝑃𝑃 sharing 𝑉# or 𝐸# separate by d = 1 to adjacent +ve polytopes of its 𝑃𝑃 pair. 

These various correspondences by separation of facial polytopes by unit distance can be combined into 
the one illustration (Fig. 2), shown at left & middle for Class II, and at right for all classes. Again, in each 
case of facial separation, adjoining pairs of polytopes of a 𝑃𝑃 (d=0) separate by unit distance d=1 (= 
length of polytope side) to adjacent polytopes of its 𝑃𝑃 pair: 

 

Fig. 2: Paired correspondences of PPs for Class II (left & middle), & generically (all classes; right). 
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2.   THE ASSOCIATED EVOLUTION OF NON-SEPARATING MORPHING FACES: CLASS II 

As partially explored in earlier papers [3, 4] and further to the description in the previous section, as one 
set of faces separates, the other 2 sets of faces evolve. Refer Fig. 3 & Table III. 

In Class II, the neutral polytopes α & β of level 1 (𝐿1) are the edges of the +ve 𝑂𝐻 & −ve 𝐶𝐵, and the 
corresponding edges of the +ve 𝑇𝑂 & 𝑇𝐶, respectively. α & β complement one another: 

 
 
 
 

 
(a) Negative 

 

 
 
 

 

(b) Neutral 

 

 (d) Generic schema of levels 

 
 
 
 

 
(c) Positive 

 

 
 
 
 

Fig. 3: Rhombic schema of the levels of development of the polar facial polytopes: 
(a)–(c) Class II –ve, ntrl, & +ve facial polytopes; (d) Generic schema of all Classes I–V. 

Negative Separations: On the Y-axis of the cubic schema going leftwards, as the −ve faces (cyan) 
separate, the +ve faces expand, evolving according to the rhombic schema of Fig. 3c from one level to 
the next higher level. Simultaneously, the neutral faces project (extrude), evolving to an analogous 
rhombic schema from one level to the next higher level (Fig. 3b). In Class II, as (lower rhomb) 𝑉!s & 
𝑆𝑄!s separate, 𝑉$s expand to 𝑇𝑅$s; while (upper rhomb) as 𝑅𝑆!s and 𝑂𝐺!s separate, 𝑅𝑇$s expand to 
𝐻𝑋$s; and meanwhile, (lower & upper rhombs) 𝑉#s and 𝐸βs project to 𝐸αs and 𝑆𝑄#s, respectively (Fig. 
1, lower left).  

Neutral Separations: On the Z-axis of the cubic schema going upwards, as the neutral faces separate, 
both the +ve and the −ve faces expand, evolving according to the rhombic schema from one level to the 
next higher level (Fig. 3d). In Class II, as (front right rhomb) 𝑉#s and 𝐸&

#s separate, 𝑉$s morph to 𝑅𝑇$s; 
and as (back left rhomb) 𝐸%#s and 𝑆𝑄#s separate, 𝑇𝑅$s morph to 𝐻𝑋$s. As (front left rhomb) 𝑉#s & 𝐸%#s 
separate, 𝑉!s morph to 𝑅𝑆!s; and as (back right rhomb) 𝐸&

#s & 𝑆𝑄#s separate, 𝑆𝑄!s morph to 𝑂𝐺!s 
(Fig. 1, upper middle). 

Positive Separations: On the X-axis of the schema going rightwards, as the +ve faces separate, the −ve 
faces expand, evolving according to the rhombic schema from one level to the next higher level (Fig. 3a). 
Meanwhile, the neutral faces project (extrude), evolving according to the analogous rhombic schema 
from one level to the next higher level (Fig. 3b). In Class II, as (lower rhomb) 𝑉$s & 𝑇𝑅$s separate, 𝑉!s 
expand to 𝑆𝑄!s; while (upper rhomb) as 𝑅𝑇$s and 𝐻𝑋$s separate, 𝑅𝑆!s expand to 𝑂𝐺!s; meanwhile, 
(lower & upper rhombs) 𝑉#s and 𝐸%#s extrude to 𝐸&

#s and 𝑆𝑄#s, respectively (Fig. 1, lower right).  
  

βα

2

0

L2

L1L1

L0



Meurant, R. C. (2023). The Morphology of the Regular & Semi-Regular Polyhedra and Tessellations  
According to the Separation of Facial Polytopes. European Journal of Applied Sciences, 11(1). 147–167.	

URL: http://dx.doi.org/10.14738/aivp.106.13776 
 

151 

 

 
Fig. 4: On-axis Class II null, regular/quasi-regular (dashed), & double (frequency) (0, α & β, 2) faces 
from center 𝑉𝑇 (circle) outwards and front to back for (left to right): +ve, ntrl, and −ve axes; null (0) 
refers to the 0D case; regular (α) to the same orientation face as for the regular 𝑃𝐿s (𝑂𝐻, 𝐶𝐵), and quasi-
regular (β) as for the quasi-regular 𝑄𝑅 (𝐶𝑂); and double (2) to the 2-frequency face. Neutral α & β faces 
are defined as the 2-gon 𝐸#s of the +ve & −ve 𝑃𝐿s 𝑂𝐻 & 𝐶𝐵, respectively. 

The neutral faces (2-gon neutral edges of the 𝑃𝑃) that are generated at the middle Level 1 𝐿1) of the 
facial rhombic schema shown in Fig. 3 are of two kinds of orientations, α & β, depending on whether 
they characterize the +ve or −ve 𝑃𝐿s (in Class II, 𝑂𝐻 & 𝐶𝐵), respectively. This is similar to the central 
𝐿1 distinction of the +ve and −ve faces into α | β orientations (Figs. 3b & 4). The morphology of the α|β 
neutral dichotomy is analogous to that of the two kinds of neutral polyhedra of the Class III honeycombs, 
especially in the primary and tertiary arrays [5−11], where the neutral diverges into complementary pairs. 

Table II. Generic Schema of the 5 Classes of the Regular & Semi-regular Polyhedra & Tilings. 

Polytope Symmetry Lower Rhomb Upper Rhomb 
Class {0,+,−} 𝑉𝑃 𝑃" 𝑃# 𝑆𝑅 𝑄𝑅 𝑇𝑟𝑛𝑐𝑃" 𝑇𝑟𝑛𝑐𝑃# 𝐺𝑅 

I {2,3,3} 𝑉𝑃$ 𝑇𝐻" 𝑇𝐻# 𝑆𝑅	𝑇𝐻: 𝑇𝐻 𝑇𝐻: 𝑇𝐻 𝑇𝑇" 𝑇𝑇# 𝐺𝑅	𝑇𝐻: 𝑇𝐻 
II {2,3,4} 𝑉𝑃$$ 𝑂𝐻" 𝐶𝐵# 𝑆𝑅	𝑂𝐻: 𝐶𝐵 𝑂𝐻: 𝐶𝐵 𝑇𝑂" 𝑇𝐶# 𝐺𝑅	𝑂𝐻: 𝐶𝐵 
III {2,3,5} 𝑉𝑃$$$ 𝐼𝐶" 𝐷𝐶# 𝑆𝑅	𝐼𝐶: 𝐷𝐶 𝐼𝐶: 𝐷𝐶 𝑇𝐼" 𝑇𝐷# 𝐺𝑅	𝐼𝐶: 𝐷𝐶 
IV {2,3,6} 𝑉𝑃$% 𝑇𝑅" 𝐻𝑋# 𝑆𝑅	𝑇𝑅:𝐻𝑋 𝑇𝑅:𝐻𝑋 𝑅𝑇" 𝑅𝐻# 𝐺𝑅	𝑇𝑅:𝐻𝑋 
V {2,4,4} 𝑉𝑃% 𝑆𝑄" 𝑆𝑄# 𝑆𝑅	𝑆𝑄: 𝑆𝑄 𝑆𝑄: 𝑆𝑄 𝑅𝑆" 𝑆𝑄# 𝐺𝑅	𝑆𝑄: 𝑆𝑄 

Table III. Class II Separation of one set of (−ve, ntrl, or +ve) facial pairs of 𝑃𝑃s with associated 
morphological changes of the other two sets of facial polytopes from source to goal (𝑂𝐻: 𝐶𝐵=𝐶𝑂). 

Separating 
facial 𝑃𝑇s 

Primary Polytope 
(𝑃𝑃) transition 

Source 
facial 𝑃𝑇s 

Goal 
facial 𝑃𝑇s 

Source 
facial 𝑃𝑇s 

Goal 
facial 𝑃𝑇s 

Negative facial 𝑃𝑇 separation Neutral facial 𝑃𝑇 projection Positive facial 𝑃𝑇 expansion 
𝑉! 𝑉𝑃" → 𝑂𝐻 #𝑉# #𝐸%# #𝑉$ #𝑇𝑅$ 
𝑆𝑄! 𝐶𝐵 → 𝑆𝑅𝐶𝑂 #𝐸&

# #𝑆𝑄# '𝑉$ '𝑇𝑅$ 
𝑅𝑆! 𝐶𝑂 → 𝑇𝑂 '𝑉# '𝐸%# #𝑅𝑇$ #𝐻𝑋$ 
𝑂𝐺! 𝑇𝐶 → 𝐺𝑅𝐶𝑂 '𝐸&

# '𝑆𝑄# '𝑅𝑇$ '𝐻𝑋$ 
Neutral facial 𝑃𝑇 separation Positive facial 𝑃𝑇 expansion Negative facial 𝑃𝑇 expansion 
𝑉# 𝑉𝑃" → 𝐶𝑂 #𝑉$ #𝑅𝑇$ #𝑉! #𝑅𝑆! 
𝐸%# 𝑂𝐻 → 𝑇𝑂 #𝑇𝑅$ #𝐻𝑋$ '𝑉! '𝑅𝑆! 
𝐸&
# 𝐶𝐵 → 𝑇𝐶 '𝑉$ '𝑅𝑇$ #𝑆𝑄! #𝑂𝐺! 

𝑆𝑄# 𝑆𝑅𝐶𝑂 → 𝐺𝑅𝐶𝑂 '𝑇𝑅$ '𝐻𝑋$ '𝑆𝑄! '𝑂𝐺! 
Positive facial 𝑃𝑇 separation Negative facial 𝑃𝑇 expansion Neutral facial 𝑃𝑇 projection 
𝑉$ 𝑉𝑃" → 𝐶𝐵 #𝑉! #𝑆𝑄! #𝑉# #𝐸&

# 
𝑇𝑅$ 𝑂𝐻 → 𝑆𝑅𝐶𝑂 '𝑉! '𝑆𝑄! #𝐸%# #𝑆𝑄# 
𝑅𝑇$ 𝐶𝑂 → 𝑇𝐶 #𝑅𝑆! #𝑂𝐺! '𝑉# '𝐸&

# 
𝐻𝑋$ 𝑇𝑂 → 𝐺𝑅𝐶𝑂 '𝑅𝑆! '𝑂𝐺! '𝐸%# '𝑆𝑄#   
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3.   PAIRING OF POLYGONAL ARRAYS BY THE SEPARATION OF FACES: CLASS IV 

Class IV of the regular and semiregular polytopes comprises the Tri−Hex arrays, where the polar 
polytopes are the +ve triangular and −ve hexagonal regular tessellations. A similar characterization to 
that made for Class II applies to Class IV, notwithstanding that it significantly differs, being of 2D 
tessellations, rather than 3D polyhedra, and unlike the other 2D Class V of the 𝑆𝑄−𝑆𝑄 cluster of arrays, 
has polar elements of different geometric form. 

Negative Separations: On the Y-axis of the cubic schema going leftwards, as (lower rhomb) 𝑉!s & 𝐻𝑋!s 
separate, 𝑉$s expand to 𝑇𝑅$s; while (upper rhomb) as 𝑅𝐻!s and 𝐷𝐷!s separate, 𝑅𝑇$s expand to 𝐻𝑋$s; 
and meanwhile, (lower & upper rhombs) 𝑉#s and 𝐸&s project to 𝐸%s and 𝑆𝑄#s, respectively (Fig. 5, left). 

Neutral Separations: On the Z-axis of the cubic schema going upwards, as (front right rhomb) 𝑉#s and 
𝐸&
#s separate, 𝑉$s morph to 𝑅𝑇$s; as (back left rhomb) 𝐸%#s and 𝑆𝑄#s separate, 𝑇𝑅$s morph to 𝐻𝑋$s. 

As (front left rhomb) 𝑉#s & 𝐸%#s separate, 𝑉!s morph to 𝑅𝐻!s; and as (upper right rhomb) 𝐸&
#s & 𝑆𝑄#s 

separate, 𝐻𝑋!s morph to 𝐷𝐷!s (Fig. 5, top).  

Positive Separations: On the X-axis of the cubic schema going rightwards, as (lower rhomb) 𝑉$s & 
𝑇𝑅$s separate, 𝑉!s expand to 𝐻𝑋!s; while (upper rhomb) as 𝑅𝑇$s and 𝐻𝑋$s separate, 𝑅𝐻!s expand to 
𝐷𝐷!s; meanwhile, (lower & upper rhombs) 𝑉#s and 𝐸%#s extrude to 𝐸&s and 𝑆𝑄#s, respectively (Fig. 5, 
right). 

 

 

Figure 5 on this page and the next show for each cluster: 
 
 

UPPER RHOMBUS: 
Great Rhombic Tri−Hex Array (top); 

Truncated Triangular Array | Truncated Hexagonal Array 
(upper left | right); 

Quasi-Regular TriHex array (lower). 
 

 

LOWER RHOMBUS: 
Small Rhombic Tri−Hex array (upper); 

Triangular Array | Hexagonal Array 
(lower left | right);  

Verticial Array (bottom). 
 

 
 
 
 
 

In this class, the hexagonal and triangular arrays are 
considered the −ve & +ve polar polytopes, respectively, 
their facial axes being the −ve (light grey) and +ve (dark 
grey) axes. 
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Fig. 5: 2.5D Schema of faces: Pairing of the Class IV polyhedra according to their −ve (lower left), ntrl 
(upper left), and +ve (lower right), faces; with (previous page) their combined positive, neutral, and 
negative faces. 
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4.   THE UNFOLDING OF APPARENT THREE-FOLD SYMMETRY 

I had previously [3] exploited the 2D characteristics of the 2.5D schema, integrating the vertical 
dimension, and associated separation of 𝑃𝑃  elements into +ve (left; 𝑂𝐻 − 𝑇𝑂 ), neutral (middle; 
𝑉𝑃−𝐶𝑂−𝑆𝑅𝐶𝑂−𝐺𝑅𝐶𝑂), and −ve (right; 𝐶𝐵−𝑇𝐶). The 3D characteristics of the schema were partially 
employed, with primary differentiation into lower (𝑉𝑃, 𝑂𝐻, 𝐶𝐵, 𝑆𝑅𝐶𝑂) and upper (𝐶𝑂, 𝑇𝑂, 𝑇𝐶, 𝐺𝑅𝐶𝑂) 
rhombi (top & bottom faces of the cubic schema). Generically, this represents separation into positive 
𝑇𝑃$−𝑃𝐿$, neutral 𝑉𝑃−𝑄𝑅−𝑆𝑅−𝐺𝑅, and negative 𝑃𝐿!−𝑇𝑃!, with lower (𝑉𝑃, 𝑃𝐿$, 𝑃𝐿!, 𝑆𝑅) and upper 
( 𝑄𝑅, 𝑇𝑃$, 𝑇𝑃!, 𝐺𝑅) rhombi. 

In this paper, these 3D characteristics are more fully developed by regarding the √3 long diagonal 𝑉𝑃—
𝐺𝑅𝐶𝑂 as the primary axis, and situated vertically, so the cubic schema can be regarded as a cube balanced 
on one vertex (𝑉𝑃) (Fig. 6b), hence demonstrating 3-fold symmetry: instead of considering +ve and −ve 
as polar opposites with neutral as central mediating case, the three gender cases of +ve, neutral, and −ve 
are allowed a measure of equal status, the main distinction being that the neutral faces (2-gon neutral 
edges of the 𝑃𝑃) that are generated at Level 1 of the facial hierarchy are of two orientations, α & β, as 
before. 

Considering the cubic schema in a true 3D multi-axial sense (in microgravity), it is evident that any 𝑃𝑃 
enjoys various kinds of pairing relationship with 3 adjoining 𝑃𝑃s, 3 distant 𝑃𝑃s, and 1 opposite 𝑃𝑃; e.g. 
in Class II, 𝑂𝐻—𝑇𝐶: 𝑂𝐻; 𝑆𝑅, 𝑉𝑃, 𝑇𝑂; 𝐶𝑂, 𝐺𝑅, 𝐶𝐵; 𝑇𝐶. On the primary 𝑉𝑃—𝐺𝑅𝐶𝑂 √3 axis, the 𝑉𝑃 
shows a stepped progression through 3 neighboring 𝑃𝑃s, 𝑂𝐻, 𝐶𝑂, 𝐶𝐵; 3 more distant relatives, 𝑇𝐶, 
𝑆𝑅𝐶𝑂, 𝑇𝑂; to culminate in its opposite, 𝐺𝑅𝐶𝑂. 

 
Fig. 6: (left) Class II rhombic bi-hierarchical network of 𝑃𝑃s (view +ve axis); 

(right) Class II 𝑉𝑃—𝐺𝑅𝐶𝑂 √3 axis with stepped progression of 𝑃𝑃 pairs 
of 𝑉𝑃 to 1: 𝑂𝐻/𝐶𝑂/𝐶𝐵; to 2: 𝑇𝐶/𝑆𝑅𝐶𝑂/𝑇𝑂; to 3. 𝐺𝑅𝐶𝑂. 

Therefore, regarding the 𝐺𝑅𝐶𝑂—𝑉𝑃 diagonal as a unique vertical primary axis to the schema (restoring 
gravity), each of the 𝑃𝑃s can be regarded as a locus of realization and/or of generation of its neighboring 
𝑃𝑃s, and the 8 𝑃𝑃s of each class can then be ranked according to their pattern of relationship to their 
adjoining 𝑃𝑃s: 𝑉𝑃 is unique, and in step 1, generates 3 equivalent 𝑃𝑃s: 𝑉𝑃 → 𝑂𝐻, 𝐶𝑂, & 𝐶𝐵. In step 2, 
𝑂𝐻, 𝐶𝑂, & 𝐶𝐵 each generate two 𝑃𝑃s, i.e., 𝑂𝐻 → 𝑆𝑅𝐶𝑂 & 𝑇𝑂; 𝐶𝑂 → 𝑇𝑂 & 𝑇𝐶 ; and 𝐶𝐵 → 𝑇𝐶  & 
𝑆𝑅𝐶𝑂. In step 3, the equivalent 𝑇𝐶, 𝑆𝑅𝐶𝑂, & 𝑇𝑂 each generate the unique 𝐺𝑅𝐶𝑂: 𝑇𝐶, 𝑆𝑅𝐶𝑂, & 𝑇𝑂 → 
𝐺𝑅𝐶𝑂, to culminate the vertical progression. The constant feature of each step instance is the separation 
of faces of one gender (−, 0, +) by unit distance, to indicate that this may be the driving characteristic. 

Hence the schema displays clear stratification (as for the cubic polar zonahedron [12]), with each 𝑃𝑃 
being generated from, and/or developing into, its fellow 𝑃𝑃s (where 𝑉𝑇 only generates; 𝐺𝑅𝐶𝑂 is only 
generated), there being 4 strata (𝑆) of elements: 𝑆1: 𝑉𝑃; 𝑆2: 𝑂𝐻, 𝐶𝑂, & 𝐶𝐵; 𝑆3: 𝑇𝐶, 𝑆𝑅𝐶𝑂, & 𝑇𝑂; and 
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𝑆4: 𝐺𝑅𝐶𝑂. The schema’s morphology exhibits clear 3-fold order around the 𝑉𝑃—𝐺𝑅𝐶𝑂 √3 axis; each 
of the 5 Classes I−V of regular & semi-regular polytopes according to symmetry is characterized by a 
development sheath of sequences from 𝑉𝑃 to 𝐺𝑅 of 3-fold nature, with the 𝑃𝑃s of a class disposed at 
those 4 strata. 

Then for each of the five classes, each constituent 𝑃𝑃 within that class can be developed by the separation 
of −ve, neutral, or +ve faces from the source 𝑉𝑃 in a sequence of steps, so: 0 step: 𝑉𝑃; 1 step: 𝑃𝐿$, 𝑄𝑅, 
𝑃𝐿!; 2 steps: 𝑇𝑃!, 𝑆𝑅𝑄𝑅, 𝑇𝑃$; 3 steps: 𝐺𝑅𝑄𝑅 (Fig. 7b). The variations in steps to realize a 𝑃𝑃 by the 
separation of adjoining surface polytopes separating by unit distance to adjacent surface polytopes can 
be given as: no way: 𝑉𝑃; one way: 𝑃𝐿$, 𝑄𝑅, 𝑃𝐿!; two ways: 𝑇𝑃!, 𝑆𝑅𝑄𝑅, 𝑇𝑃$; and six ways: 𝐺𝑅𝑄𝑅. 

 
Fig. 7: The 3-fold order and pairing of polytopes by neutral faces and their separation: 

(a) Class II, (b) Generic, i.e., for all 5 classes of symmetry, (c) Class IV. 
For Class II, this is 0 step (variations in steps of no way), VPII; 1 step (1 way), 𝑂𝐻, 𝐶𝑂, 𝐶𝐵; 2 steps (2 
ways), 𝑇𝐶, 𝑆𝑅𝐶𝑂, 𝑇𝑂; 3 steps (6 ways), 𝐺𝑅𝐶𝑂 (Fig. 7a). For Class IV, this is 0 steps (no way), 𝑉𝑃(); 1 
step (1 way), 𝑇𝑅, 𝑄𝑅	𝑇𝑅:𝐻𝑋, 𝐻𝑋; 2 steps (2 ways), 𝑇𝑟𝑛𝑐𝐻𝑋, 𝑆𝑅	𝑇𝑅:𝐻𝑋, 𝑇𝑟𝑛𝑐𝑇𝑅; 3 steps (6 ways), 
𝐺𝑅	𝑇𝑅:𝐻𝑋 (Fig. 7c). (NB. Or, subduction sequences of facial convergence could consider 𝐺𝑅𝑄𝑅 →
(𝑇𝑃$, 𝑆𝑅𝑄𝑅, 𝑇𝑃!) → (𝑃𝐿$, 𝑄𝑅, 𝑃𝐿!) → 𝑉𝑃). Therefore, each family of polytopes demonstrates a high 
degree of order, and should not be thought of as being in any sense accidentally related; or within any 
one class, by assuming one 𝑃𝑃 is equivalent to the other seven. Rather, they simultaneously crystallize 
into formal existence as regularly varied concretizations of an integral, profound natural spatial order.  

The 3-fold morphology of the 8 𝑃𝑃s in each class shows the structure of a polar zonahedron, as also 
observed in the evolution/involution of the 2D polar zonagon. This geometry at higher frequency (f = 
(12, 24, 48, 60…) is used in Islamic sacred architecture of the dome, in the 3D form and in 2D surface 
decoration, as explored in part of my PhD [12:pp.9−34], and offers facile advantages to construction and 
decoration (equal subdivision of angle in plan; equal length edges; constant vertical gain of edges; 
corresponding equal vertical stratification of nodes; nodes lying on rotated sine wave surface). In sacred 
and traditional architecture, the form can eloquently symbolize the geometry of the center, projected into 
time and space; the cycle of manifestation and transformation of a central epiphany emanating from the 
source, extending to maximum realization in the phenomenal; then reflecting, clarifying, and centering, 
for the manifestation to be reabsorbed through the center, to return to the noumenal beyond creation.  

But the 3-fold symmetry of −ve, ntrl, and +ve is imperfect; consideration of the duality of the polyhedra 
indicates that the function of the neutral is different from that of the polar; there is a creative tension 
between this characterization and the unfolding of order from wrapping around a central axis, to reflective 
symmetry about a central vertical axis of neutrality; the sheath of the schema splits open to uncurl to 
dispose elements and relationships into bilateral symmetry of vertical qualitative differentiation, and 
horizontal duality/polarity. Hence the subtlety of the 2.5D schema that can mediate that creative tension. 
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Table IV. Generic separation of one set of (−ve, neutral, or +ve) facial pairs of 𝑃𝑃s together with  
associated morphological changes of the other 2 sets of facial polytopes (𝐹s) from source to goal. 

Separating 
facial 𝑃𝑇s 

Primary Polytope 
(𝑃𝑃) transition 

Source 
facial 𝑃𝑇s 

Goal 
facial 𝑃𝑇s 

Source 
facial 𝑃𝑇s 

Goal 
facial 𝑃𝑇s 

Negative facial 𝑃𝑇 separation Neutral facial 𝑃𝑇 projection Positive facial 𝑃𝑇 expansion 
𝐹#! 𝑉𝑃 → 𝑃𝐿$ #𝑉## #𝐸%# #𝑉#$ #𝐹%$ 
𝐹%! 𝑃𝐿! → 𝑆𝑅𝑄𝑅 #𝐸&

# #𝐹"# '𝑉#$ '𝐹%$ 
𝐹&
! 𝑄𝑅 → 𝑇𝑃$ '𝑉## '𝐸%# #𝐹&

$ #𝐹"$ 
𝐹"! 𝑇𝑃! → 𝐺𝑅𝑄𝑅 '𝐸&

# '𝐹"# '𝐹&
$ '𝐹"$ 

Neutral facial 𝑃𝑇 separation Positive facial 𝑃𝑇 expansion Negative facial 𝑃𝑇 expansion 
𝐹## 𝑉𝑃 → 𝑄𝑅 #𝑉#$ #𝐹&

$ #𝑉#! #𝐹&
! 

𝐹%# 𝑃𝐿$ → 𝑇𝑃$ #𝐹%$ #𝐹"$ '𝑉#! '𝐹&
! 

𝐹&
# 𝑃𝐿! → 𝑇𝑃! '𝑉#$ '𝐹&

$ #𝐹%! #𝐹"! 
𝐹"# 𝑆𝑅𝑄𝑅 → 𝐺𝑅𝑄𝑅 '𝐹%$ '𝐹"$ '𝐹%! '𝐹"! 

Positive facial 𝑃𝑇 separation Negative facial 𝑃𝑇 expansion Neutral facial 𝑃𝑇 projection 
𝐹#$ 𝑉𝑃 → 𝑃𝐿! #𝑉#! #𝐹%! #𝑉## #𝐸&

# 
𝐹%$ 𝑃𝐿$ → 𝑆𝑅𝑄𝑅 '𝑉#! '𝐹%! #𝐸%# #𝐹"# 
𝐹&
$ 𝑄𝑅 → 𝑇𝑃! #𝐹&

! #𝐹"! '𝑉## '𝐸&
# 

𝐹"$ 𝑇𝑃$ → 𝐺𝑅𝑄𝑅 '𝐹&
! '𝐹"! '𝐸%# '𝐹"# 

 
These correspondences between classes of the various facial transformations of separation, 
morphing/expansion of the −ve or +ve faces or extrusion/projection of the neutral faces help validate the 
2.5D schema and the rhombic schema of evolution of faces, while serving to characterize the progressions 
and interrelationships of the polyhedra and tessellations. 

In the following Figs. 8 and 9, F = Face, including where relevant (on axis) null or degenerate 0D 𝑉𝑇 and 
1D 𝐸, as well as 2D polygons. 

Right superscript: Polarity, of –, negative; 0, neutral; or +, positive. 

Left subscript: Spacing of faces of d=0 : adjoining, or d=1 : adjacent, with 1 = edge length of polytope. 

Right subscript: Hierarchical level of face: 0 = 𝑉𝑇; α: single freq. +ve face of +ve 𝑃𝐿 𝑃𝑇, or neutral face 
(edge) of polar +ve 𝑃𝑇; β: −ve (single freq.) face (“rotated”) of 𝑄𝑅 𝑃𝑇, or ntrl face (𝐸) of −ve 𝑃𝐿 𝑃𝑇 (α 
& β = level 1); 2: double freq. −|+ve face of 𝑇𝑃 or 𝐺𝑅 𝑃𝑇 or ntrl face/𝑆𝑄 of 𝑆𝑅 or 𝐺𝑅 𝑃𝑇. 

Letting faces be null on-axis 0D vertices or 1D edges enables formal consistency across the 𝑃𝑃s. 
Taken together, −ve, ntrl, & +ve faces form each polyhedron or tiling of the 5 symmetry classes. 
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Fig. 8: Generic 2.5D Schema of faces across classes, with exemplar Class II faces: 
Upper: ntrl faces. Left: −ve faces. Right: +ve faces. Lower: ntrl, −ve, & +ve faces. 
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Fig. 9: Rotated Class II 2.5D Schema of faces: top/center: ntrl (0 rotation of schema); left: −ve faces 
(−2π/3 rotation); right: +ve faces (+2π/3). The −ve/ntrl/+ve faces combine to form each 𝑃𝑇. 
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Faces are null; regular or quasi-regular (of the regular or quasi-regular 𝑃𝑇); or double (0, α or β, or 2): 

 
A. Negative faces 

Z- & X-axes: 
Front right: 0→α|β→2 rhomb d=0 
   Back left: 0→α|β→2 rhomb d=1 

Y-axis: Separation of −ve faces 
(bold) d=0 → d=1 

B. Neutral faces 
X- & Y-axes: 

Lower: 0→α|β→2 rhomb d=0 
 Upper: 0→α|β→2 rhomb d=1 
Z-axis: Separation of ntrl faces 

(bold) d=0 → d=1 

C. Positive faces 
Y- & Z-axes: 

  Front left: 0→α|β→2 rhomb d=0 
Back right: 0→α|β→2 rhomb d=1 

X-axis: Separation of +ve faces 
(bold) d=0 → d=1 

 
Fig. 10: Formal patterns for left to right −ve, ntrl, & +ve clusters of faces of the cubic schema. Patterns 

of separation and morphing/extrusion are identical across faces, −ve & +ve reflective.  

5.   INTEGRATING THE RELATIONSHIPS 

The formal structure of elements of the five classes of regular and semiregular polyhedra and 
tessellations, and the relationships between the elements in any one class, become evident. The key is the 
2.5D cubic schema in concert with the rhombic schema of the development of faces, reorienting the cube 
on its √3 long axis of 𝑉𝑃—𝐺𝑅, and recognizing the separation of faces characterizing any one of the 
cubic schema links between polytopes as bundles/sheaths of parallel faces of the cube as zonahedron. 
Then either of the other 2 sets of characteristics of the simultaneous morphing or expansion of +ve or 
−ve facial polytopes, and the projection or extrusion of neutral facial polytopes, can be recognized as the 
other 2 zonahedral bundles of the zonahedral cube, respectively, though these are not simply equivalent 
to the neutral case that exploits the primary orthogonal axes of the rhomb, but are differentiated into pairs 
of pairs that exploit the inclined axes/opposite edges of the rhomb, separating d=0 and 1 rhombs. 

In the negative facial case (Fig. 10A), −ve front right cubic schema faces are adjoining d=0, while back 
left are adjacent d=1. On the Z-axis, the pairs of pairs are 2×(0→β) & 2×(α→2), where d=0: (00→β0) & 
(α0→20), and d=1: (01→β1) & (α1→21). On the X-axis, the pairs of pairs are 2×(0→α) & 2×(β→2), where 
d=0: (00→α0) & (β0→20), d=1: (01→α1) & (β1→21).  

In the neutral facial case (Fig. 10B), neutral lower cubic schema faces are adjoining d=0, while upper 
are adjacent d=1. On the X-axis, the pairs of pairs are 2×(0→β) & 2×(α→2), where d=0: (00→β0) & 
(α0→20), and d=1: (01→β1) & (α1→21). On the Y-axis, the pairs of pairs are 2×(0→α) & 2×(β→2), where 
d=0: (00→α0) & (β0→20), d=1: (01→α1) & (β1→21).  

In the positive facial case (Fig. 10C), +ve front left cubic schema faces are adjoining d=0, while back 
right are adjacent d=1. On the Y-axis, the pairs of pairs are 2×(0→α) & 2×(β→2), where d=0: (00→α0) 
& (β0→20), and d=1: (01→α1) & (β1→21). On the Z-axis, the pairs of pairs are 2×(0→β) & 2×(α→2), 
where d=0: (00→β0) & (α0→20), d=1: (01→β1) & (α1→21).   

√3
 a

xi
s

21

α1
β0

β1

20

α0 01

0000

20

α0

β1

01

α1

21

β0

21

20
01

β1

α1

α0 β0

00



European Journal of Applied Sciences (EJAS)      Vol. 11, Issue 1, January-2022 

Services for Science and Education – United Kingdom 
 

160 

 

In each case of −ve, ntrl, & +ve clusters of faces, the separation of faces by gender is represented as the 
Y-, Z-, or X-axis separating rhombic schema of 0→α|β→2 for d=0 → d=1. 

Generically, for any one class, and for each case of −ve, neutral, or +ve facial polytope, each constituent 
𝑃𝑃 can be uniquely described in terms of two parameters: 1. The level of facial polytope evolution, i.e., 
(0, α, β, 2), and 2. the separation of facial polytope distance, whether adjoining or adjacent, i.e., (0, 1). 
The 𝑃𝑃s are tabulated by 𝐹 evolution & separation: 

Table V. Constituent PPs of each class as generic expressions of facial evolution and separation. 

Separation Negative Neutral Positive 
d 0 α β 2 0 α β 2 0 α β 2 
0 𝑉𝑃 𝑃𝐿! 𝑄𝑅 𝑇𝑃! 𝑉𝑃 𝑃𝐿$ 𝑃𝐿! 𝑆𝑅 𝑉𝑃 𝑃𝐿$ 𝑄𝑅 𝑇𝑃$ 
1 𝑃𝐿$ 𝑆𝑅 𝑇𝑃$ 𝐺𝑅 𝑄𝑅 𝑇𝑃$ 𝑇𝑃! 𝐺𝑅 𝑃𝐿! 𝑆𝑅 𝑇𝑃! 𝐺𝑅 

 
Any one case: −ve, neutral, or +ve of the facial polytope, in combination with the separation (Sep.) of 
those neighboring facial polytopes of adjoining (d=0) or adjacent (d=1), is sufficient information to 
determine the PP of that class, whether 𝑉𝑃, 𝑃𝐿!/$, QR/𝑆𝑅, 𝑇𝑃!/$, or 𝐺𝑅. Excepting the 𝑄𝑅/𝑆𝑅 pair, 
the −ve and +ve cases are reflectively symmetric about the 𝑉𝑃—𝐺𝑅 axis, while the neutral case shows 
different structure, which suggests that my neutral annotation and analysis might be improved. The 
overall structure indicates that as well as the obvious 𝑃𝐿!/$ and 𝑇𝑃!/$ polarities, there is limited 𝑄𝑅/𝑆𝑅 
polarity.  

Generically, for any one class, and for each case of −ve, neutral, or +ve facial polytope, each constituent 
𝑃𝑃 can alternatively be uniquely described according to its property of gendered −ve, neutral, and/or +ve 
facial separation, hence d!#$ = 0	or	1: 

Table VI. Constituent PPs of each class as generic expressions of facial separation d= |−0+|. 

 Generic  Facial separation d  Class II  
  𝐺𝑅    |111|    𝐺𝑅𝐶𝑂   
 𝑇𝑃$ 𝑆𝑅 𝑇𝑃!  |110| |101| |011|  𝑇𝑂 𝑆𝑅𝐶𝑂 𝑇𝐶  
 𝑃𝐿$ 𝑄𝑅 𝑃𝐿!  |100| |010| |001|  𝑂𝐻 𝐶𝑂 𝐶𝐵  
  𝑉𝑃    |000|    𝑉𝑃   

 
This returns the tentative 3-fold order to bilateral symmetry, and the historical perspective of the 
perfection of the regular 𝑃𝐿s, though elsewhere I make an alternative case that it is the 𝑄𝑅s that are 
perfect, while the 𝑃𝐿s are extremes [13]. But given that these polyhedra and tessellations are discovered 
as projections of the noumenal (ideal) into the phenomenal (contingent) realm, the enigmatic possibility 
remains that such limited 3-fold symmetry represents a trace of primordial evolution of formal symmetry, 
suggests that the constraints and properties of space that we encounter might at the cosmic level be subject 
to change, and raises the intriguing question of whether such change would be abrupt or gradual. One 
might speculate whether in our cosmos, three-fold symmetry is unstable (e.g., is it common in the animal 
kingdom? It seems at least uncommon); and to be subsumed into a kind of 2-step bilateral symmetry that 
I intend to address in a subsequent paper, which is characterized by complementary forms as (−ve ↔ 
+ve), rather than identical, allowing the tentative self-reflective quality of the neutral (𝑉𝑃 ↔ 𝐺𝑅 and 𝑄𝑅 
↔ 𝑆𝑅)). Further, can these patterns and their harmonic order be correlated with quantum forms and field 
behavior, where resonance seems a fundamental quality? 
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Fig. 11: Expansion of 2.5D cubic schema to demonstrate the rhombic schema on each of its six faces. 
Lower left, bottom, & lower right outermost faces show +ve, ntrl, and −ve (d=0) adjoining rhombic 
schema; upper right, top, and upper left outermost faces show +ve, ntrl, and −ve (d=1) adjacent rhombic 
schema. 
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Fig. 12: Bi-rhombic (cubic) schema for the −ve (left), ntrl (center), and +ve (right) faces, abstracted from 
the outer 6 faces of the extended 2.5D schema in the previous figure. For consistency, 3 views are taken 
through the cube, one per cluster, from (outside) adjacent (d=1) to (inside) adjoining (d=0) faces. 

 

In each cluster of Fig. 12, lower rhomb is of adjoining faces (d=0) of the polytope, upper rhomb is of the 
corresponding adjacent faces (d=1). Vertical links indicate these corresponding pairs. Each rotated rhomb 
traces the same progression of < 0 → α|β → 2 > of lower level 0-polytope, level 1 α & β polyhedra, and 
level 2 polyhedra. The −ve and ntrl clusters show α at left, while +ve shows β at left. Note the subtle 
“circulation” of polyhedra at the mid-levels from cluster to cluster; only the ntrl shows the initial schema, 
while the +ve & −ve are rotated. These clusters correspond to those of Fig. 8, so the −ve schema (cluster) 
is rotated counter-clockwise (−2π/3) from the ntrl schema (cluster) about the vertical 𝐺𝑅—𝑉𝑃 main √3 
axis, while the +ve schema is rotated clockwise (+2π/3); bear in mind that in this figure, the polyhedra of 
the schema rotate (as a group), while their relationships (the schema edges) are conserved through the 
three states of −ve, ntrl, and +ve. 
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Fig. 13: The simultaneous various facial evolutions. Double lines of cyan, yellow, magenta denote the 
separation of faces for the respective −ve Y, ntrl Z, +ve X (lower left, top, lower right) axes. Single lines 
of varied dash of such coloring denote the simultaneous evolution of faces of two paired (0→α) & (α→2), 
and (0→β) & (β→2), with 𝑃𝑃 faces cyan, yellow, magenta, respectively. In each schematic cube, the 4 
−ve, ntrl, or +ve parallel lines denoting the evolution of faces correspond to the bundles of edges of the 
three zones of the cubic zonahedron. The double line zonal bundle separates the two faces of the 
schematic cube as enantiomorph of the rhombic schema, the polytopes of one face for d=0 where faces 
adjoin (sharing a common vertex or edge), while those of the opposing face for d=1 where the faces are 
adjacent (separated by unit distance). The −ve, ntrl, +ve rhombs for the Y, Z, X axes are abstracted at top 
left, bottom, top right, respectively. All 3 cubic schema apply simultaneously; the −ve and +ve cubic 
schema are bilaterally symmetric, the transformations of the schema applying to the relationships (edges), 
not the 𝑃𝑃s. All five classes demonstrate the same morphology, allowing for the dimensional difference 
between the polyhedra and polygonal tessellations (Classes I–III cf. IV & V). 
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6.   CONCLUSION 

Earlier apprehension [11, 12] suggested that the elegance of the regular and semiregular polyhedra and 
tessellations was surely matched by their order, and has inspired subsequent research. 

 
Fig. 14: Separation of faces by −ve/ntrl/+ve gender. Each transition 𝑃𝑃#→𝑃𝑃' is characterized by a 
separation of neighboring faces from adjoining (d=0) to adjacent (d=1), in 3 X,Y,Z zones. Left to right: 
Generic, Class II polytopes, & IDs. 𝑃𝑃s evolve (devolve) upwards (downwards) 𝑉𝑃→𝐺𝑅 (𝐺𝑅→	𝑉𝑃). 

Inspection of this schema (Fig. 14) shows that any 𝑃𝑃  transition 𝑃𝑃#→𝑃𝑃'  is characterized by a 
separation of neighboring faces from adjoining (d=0) to adjacent (d=1), in one of the 3 X, Y, or Z zones. 

 
Fig. 15: Simultaneous transformation of faces by (0→α|β→2) evolution. As faces of one −ve/ntrl/+ve 
gender separate, faces of the remaining two genders transform, in pairs of transitions of 𝑷𝑷s of each 
zone. Quartiles show facial evolutionary stage, with zones in (0→α, β→2) or (0→β, α→2) pairs. Mid-
points conserve facial separation, each zone with 1 (0, α, β, 2) face. Left to right: −ve; ntrl; +ve faces. 

Figure 15 demonstrates that for each case of −ve, ntrl, and +ve faces, as one zone of the cubic schema 
represents the separation of −ve, ntrl, or +ve faces, respectively, one of the other two zones represents 
two pairs of parallel 0→α and β→2 transitions, while the other zone represents two pairs of parallel 0→β 
and α→2 transitions. Figure 16 shows that for each case of −ve, ntrl, and +ve faces, the X, Y, or Z axial 
zone of separation of faces representing 0→0, α→α, β→β, and 2→2 of the cubic schema of d=0 and d=1, 
respectively, separates two corresponding rhombic schema of d=0 and d=1, respectively, as previously 
shown in Fig. 10. 
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Fig. 16. Y, Z, & X zone separation of d=0 & d=1 rhombic schema of −ve, ntrl, +ve faces (L to R). 

Thus, the separation of faces appears fundamental to the progression of 𝑃𝑃s represented by the edges of 
the cubic schema. That separation of faces for one gender is complemented by the simultaneous morphing 
of the faces of the other two genders according to either of two opposite edges of the rhombic schema of 
(0→α and β→2), or (0→β and α→2), respectively. 

This elegant morphology appears to characterize the order of the regular and semi-regular polyhedra and 
tessellations. Consequent upon the assumption of a null polytope in each of the five symmetry classes; 
the assumption of degenerate 0D and 1D facial polytopes of certain vertices and edges by gender; the 
cubic schema of 𝑃𝑃 s; its rotation to the vertical 𝑉𝑃→𝐺𝑅  √3 axis; the rhombic schema (in both 
enantiomorphs) of null 0, regular α or quasi-regular β, and 2𝑓 faces; the notion of limited 3-fold symmetry 
to the order; the fundamental separation of faces d=0 to d=1; and accommodation of the transitional form 
of the snub enantiomorphs of each class at the center of the cubic schema, at the mid-point of the 𝑆𝑅𝑄𝑅—
𝑄𝑅 jitterbug and main 𝑉𝑃—𝐺𝑅 axes, the order of the polyhedra and tessellations is herein adequately 
described. 

This work might find application to diverse fields of polyhedral geometry, crystallography, chemistry 
(phase transitions, bi-polymers, smart polymers, catalysts), artificial bone matrix integrating variable 
flexibility, biomedicine (triggered deployment of dosage of drug from nanocages), smart material, 
wearable (conformable) electronics, space structures (dynamic structures, deployable antennae in Space), 
nanostructures, perhaps quantum mechanics and field theory, and potentially the nature of space itself. 
Future research is intended to refine the order of the all-space-filling periodic arrays of 2D & 3D 𝑃𝑇s in 
the light of this cubic schema. 

Historically, the regular (and semi-regular) polyhedra as independent entities have been recognized as 
perfect (and semi-perfect) forms. However, while such formal perfection should at the very least be 
matched in their overall structure and morphology, I am unaware of any adequate order having previously 
been advanced. This paper redresses that shortfall with reference to the separation of one set of +ve, ntrl, 
or −ve faces characterizing the zonahedral progression of 𝑃𝑃' to 𝑃𝑃" on the rotated 2.5D cubic schema, 
while the other two sets of faces evolve according to the rhombic schema. It has been a privilege to 
glimpse such perfection. 

*** 
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Nomenclature: non-dimensional: –ve, negative; ntrl, neutral; +ve, positive; 𝑓, frequency (of 𝐹); 𝐺𝑅, 
great rhombic; 𝐿0−𝐿2, level (0, 1= α & β, 2) of rhombic schema; 𝑃, pole or polar; 𝑆1– 4, strata (1–4) of 
rotated cubic schema; 𝑆𝑛𝑏, snub; 𝑆𝑅, small rhombic; 𝑇𝑟𝑛𝑐, truncated. ● zero-dimensional: 𝑉#, neutral 
vertex (𝑁𝑉); 𝑉, vertex (but can be 1 or 2D ‘𝐹’); 𝑉𝑃, verticial polytope hence 𝑉𝑃+–-. ● one-dimensional: 
𝑑, distance of proximal 𝐹s (0 or 1); 𝐸, edge (𝐸𝐺) but here can be 2D ‘𝐹’; 𝐸#, neutral edge (𝑁𝐸) but here 
2D 2-gon ‘𝐹’. ● two-dimensional: 𝐷𝐷 , dodecagon (12-gon); 𝐻𝑋, hexagon or hexagonal array; 𝑂𝐺 , 
octagon; 𝑃𝑅, polar polygon; 𝑅𝐻, rotated hexagon; 𝑅𝑃, ‘rotated’ polar polygon (trunc.); 𝑅𝑆, ‘rotated’ 
(trunc.) square; 𝑅𝑇, ‘rotated’ (trunc.) triangle; 𝑅𝑋, ‘rotated’ (trunc.) hexagon; 𝑆𝑄, square; 𝑆𝑄#, neutral 
square (𝑁𝑆); 𝑆𝑄: 𝑆𝑄, square–square array; 𝑇𝑃, truncated polar polygon (2𝑓); 𝑇𝑅, triangle or triangular 
array; 𝑇𝑅:𝐻𝑋, tri-hex array; 𝑇𝑟𝑛𝑐𝐻𝑋, truncated hexagonal array; 𝑇𝑟𝑛𝑐𝑇𝑅, truncated triagonal array; 
𝑍𝐺 , zonagon. ● three-dimensional: 𝐶𝐵 , cube; 𝐶𝑂 , cuboctahedron; 𝐷𝐶 , dodecahedron; 𝐺𝑅𝐶𝑂 , great 
rhombic cuboctahedron; 𝐼𝐶 , icosahedron; 𝐼𝐶: 𝐷𝐶 , icosidodecahedron; 𝑂𝐻 , octahedron; 𝑂𝐻: 𝐶𝐵 , 
octahexahedron (= 𝐶𝑂 ); 𝑆𝑛𝑏𝐶𝑂 , snub cuboctahedron; 𝑆𝑅𝐶𝑂 , small rhombic cuboctahedron; 𝑇𝐶 , 
truncated cube; 𝑇𝐷, truncated dodecahedron; 𝑇𝐻, tetrahedron; 𝑇𝐻: 𝑇𝐻, tetra-tetrahedron (Class I colored 
𝑂𝐻); 𝑇𝐼, truncated icosahedron; 𝑇𝑂, truncated octahedron; 𝑇𝑃, truncated polar polytope; 𝑇𝑇, truncated 
tetrahedron; 𝑍𝐻, zonahedron. ● multi-dimensional: 𝐹, face = facial 𝑃𝑇 (in this paper, 0D, 1D, or 2D); 𝛼, 
regular facial polytope; 𝛽, quasiregular facial polytope; 𝐺𝑅𝑄𝑅, great rhombic quasiregular; 𝑃𝐿, polar 
polytope; 𝑃𝑃, primary polytope; 𝑃𝑇, polytope; 𝑄𝑅 , quasiregular; 𝑆𝑛𝑏𝑄𝑅 , snub quasiregular; 𝑆𝑅𝑄𝑅 , 
small rhombic quasiregular. ■ 

 
Robert C. Meurant □ B.Arch (Hons) (1978), and PhD in Architecture (1984), University of 
Auckland, New Zealand □ MA in Applied Linguistics (2007), University of New England, 
Australia □ Director Emeritus, Institute of Traditional Studies, founded 1984 □ Taught in 
universities in New Zealand, the United States, and Korea □ Published 6 books, 70 papers, 
presented papers in New Zealand, the U.S., the U.K., Japan, and Korea □ For many years, a 
director of the Science & Engineering Research Support Society (SERSC), Korea □ Research 
interests: sacred and traditional geometry, art, and architecture; the traditional philosophy of art; 
number and form; the polyhedra; structural morphology and geometry; deployable Space 
habitation and large-scale structures in microgravity, nanoarchitecture, applied linguistics ■ 

 

 


