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1. Abstract/Introduction 
Inspired by Critchlow [1], I previously advanced a new order in space to account for the 
regularities and relationships of the regular and semi-regular polyhedra, in three classes I–III 
of {2,3,3}, {2,3,4}, and {2,3,5} symmetry, and its extension to the regular and semi-regular 
tilings of the plane, of two classes IV & V of {2,3,6} and {2,4,4} symmetry [2]. Each class 
consisted of 7 polytopes, together with a further enantiomorphic 8th snub polytope, which 
functioned as a transition polytope. Within each class, 3D polyhedra (2D polygonal arrays) 
were presented in inverted “T” form, consisting of a horizontal base truncation sequence 
between positive (+ve) polar and negative (–ve) polar polytope: PL+– TP+– QR – TP–– PL–; 
and a vertical transcendent sequence: 1° QR – (1.5° SnbQR) – 2° SR – 3° GR (with SnbQR in 
either enantiomorph form). In this work, I assume that the reader is familiar with that earlier 
research, which PDF is downloadable from my homepage [2]. The recognition of the regular 
polyhedra of +ve & –ve tetrahedra, octahedron & cube, and icosahedron & dodecahedron as 
extreme polar forms, mediated by the perfect forms of the Class I–III quasi-regular polyhedra 
of the respective ‘tetratetrahedron’ (2-colored octahedron), ‘octahexahedron’ (cuboctahedron), 
and icosidodecahedron (and corresponding Class IV & V quasi-regular 2D polygonal tri–hex 
and square–square arrays), was a relevant critical insight informing another of my papers [3]. 

In this present paper, I advance a cubic 2.5-dimensional schema to better describe the 
morphological structure of each class, by firstly positing a null polytope VP; then 
transforming the structural order of each class from the inverted T form of two sequences, 
into a cubic schema of two expansion sequence clusters, whereby in either, a seed polytope 
expands in either of two ways into two kinds of intermediary polytope, then in the other way, 
to a fully developed polytope. I describe this in relation to the most important Class II of 
{2,3,4} symmetry, as it corresponds to the polyhedra that constitute all 16 (10 distinct) of the 
Class III honeycombs. To confirm the validity of the order, I also describe Class IV of {2,3,6} 
symmetry of the regular and semi-regular tilings of the plane, which like Class II & III, is 
asymmetric: polar opposites are not the same though recolored polytopes, but different 
polytopes. The diverse correspondences of the order across classes are rigorous. In a longer 
development of this paper, I anticipate describing all five classes of the revised new order in 
space, characterizing the polytopes and their expansion sequences and clusters thereof. 
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Nomenclature 
+ve, positive; –ve, negative; C, class; CB, Cube; CO, Cuboctahedron; DD, Dodecagon (12-gon); E, 
Edge; E0, Neutral Edge; F: Face; GR, Great Rhombic; GRCO, Great Rhombic Cuboctahedron; HX, 
Hexagon; NS, Neutral Square; ntrl, Neutral; OG, Octagon; OH, Octahedron; P, Pole/Polar; PL+/–, +/–ve 
Polar; QR, Quasi-regular; RS, Rotated (tRuncated) Square; RT, Rotated (tRuncated) Triangle; RX, 
Rotated Hexagon; Snb, Snub; SnbCO, Snub Cuboctahedron; SnbQR, Snub Quasi-regular; SQ, Square; 
SR, Small Rhombic; SRCO, Small Rhombic Cuboctahedron; T or Tr, Truncated; TC, Truncated Cube; 
TH, Tri–Hex (array); TO, Truncated Octahedron; TP, Truncated Polar; TrP+/–, Truncated +/–ve Polar; 
TR, Triangle; V+/–, +/–ve Vertex; V0, Neutral Vertex; VPC, null Vertex Polytope of Class C. 
 
2.   Honeycomb/Tiling Investigations 
Inspired by Grünbaum and Shephard [4], I later investigated the structural morphology of the 
all-space-filling polyhedral honeycombs of Class I–III of {2,3,3|2,3,3}, {2,3,3|2,3,4}, and 
{2,3,4|2,3,4} symmetry, and the corresponding polygonal tilings of the plane of Classes IV & 
V of {2,3,6} & {2,4,4} symmetry [5–7]. I gained significant insight into the honeycomb order 
when I posited for each class C the null quasi-regular polytope, as the vertex of zero 
dimension, with zero extension, but with +ve and –ve polar vertices V+ and V–, and neutral 
(ntrl) vertices V0, all coincident in the verticial polytope VPC = V+ + V0 + V–, while allowing 
spatial extension in the expansion sequences. This insight was first in relation to the various 
3D honeycombs, especially the polyhedral honeycomb Class III of {2,3,4|2,3,4} symmetry, 
and later extended to the 2D honeycomb Class IV & V of {2,3,6} & {2,4,4} symmetry [5–7]. 

 
Fig. 1. Archetypal expansion sequence diamond clusters at lower (left) and upper (right). Texts of 

upper left and lower right diamonds refer to the faces of their lower and upper polytopes, respectively. 
0° face is V, 1° face is PF (left); 1° face is TrPF, 2° is twice truncated = double frequency face (right). 

Seed polytope expands in 2 ways, as one pole morphs while other separates by +1, and vice versa; then 
morphed pole separates by +1 while separated pole morphs, and vice versa, to common rhombic QR. 

Further progress was made through the organizing principle of the common formal structure 
of an expansion sequence cluster, of contracted seed honeycomb that in the first stage, 
expands in either of two ways to two intermediary honeycombs; and in the second stage, 



 

expands further in the other of the two ways, respectively, to the fully expanded honeycomb 
[5–7]. A common pattern to all 16 Class III {2,3,4|2,3,4} honeycombs (of 10 distinct forms) 
[6: fig. 2] then became evident. The schema was also seen in the Class IV & V honeycomb 
2D tiling arrays, allowing its recognition in the Class IV & V polytope arrays, and abstraction 
to the Class I–III polytopes. This revised order and 2.5D schema of the polyhedra enabled 
deep insight into the structural morphology of the regular & semi-regular polytopes (Fig. 1). 
 
3. The revised order of the Class II polytopes and their 2.5D schema 
The initial step of introducing the null polytope, in this Class II, the null CO VPII, is to locate 
it on the central transcendent vertical axis, below the QR CO, in effect a 0° element. But this 
does not provide adequate relation to the other polyhedra. The appropriate formal structure 
then becomes two overlapping diamonds separated vertically (omitting SnbCO), recognizing 
two groups of 4 of the now 8 elements, in which each element of one group has a unique pair 
in the other group, logically pairing the lower form with its upper truncated form (Figs. 2, 3). 

 
Fig. 2. Overlapping diamonds of the schema: Class II (left) & on neutral axis (center), Class IV (right). 

This suggested investigating the corresponding transformations on each of the x, y, and z axes 
of the figure, where the two overlapping diamonds could now be recognized as the lower and 
upper faces of a cube in projection, in which those x, y, z axes could be examined (Fig. 3). 

 
Fig. 3. Class II {2,3,4} (left), general 2.5D schema (center), Class IV {2,3,6} (right), on negative axis. 

This schema shows a high degree of regularity. As previously mentioned, the vertical axis 
transformations correspond to truncations, hence the null polytope VPII can be deduced to be 
a truncation of the QR CO; V+, V0, & V– coincide in the vertex VPII: VP = V+ + V0 + V–. 
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In the lower diamond sequence cluster, the seed form of the null VPII expands on the x-
axis to the PL– CB, and y-axis to the PL+ OH: OH ↖ NV ↗ CB; then on the x-axis the OH, and on 
the y-axis the CB, expand to the common neutral SRCO: OH ↗ SRCO ↖ CB.  

In the upper diamond sequence cluster, the seed form of the neutral QR CO expands on the 
x-axis to the TP– TC, and y-axis to the TP+ TO: TO ↖ CO ↗ TC; then on the x-axis the TC, and on 
the y-axis the TO, expand to the common neutral GRCO: TO ↗ GRCO ↖ TC, correspondingly. 

Polyhedra axes are common to all polyhedra in a class, but vary class-to-class. Class II –
ve, ntrl, & +ve axes are defined as the normal axes of the (100), (110), & (111) planes, 
respectively. OH vertices and CB faces are –ve, the edges of both in two orientations are ntrl, 
while OH TR faces and CB vertices are +ve. The QR CO is composed of –ve RSs and +ve 
RTs. Transformations of the constituent polytopes (faces/edges/vertices) of the 8 polyhedra or 
polygonal arrays in a class can then be characterized by axis of the 2.5D schema. For Class II: 
On the z-axis (↑), –ve elements increase 1°: (V!– ↑ RS!–,	SQ!–  ↑ OG!– , V#– ↑ RS#–,	SQ#–  ↑ OG#–); ntrl 
elements separate, so adjoining vertices become unit distance apart: (V!! ↑ V#!, 2×(E!! ↑ E#!), 
NS!!  ↑ NS#!), the 2×(E!!  ↑ E#!), being in 2 sets of different orientations; and +ve elements 
increase 1°: (V!$ ↑ RT!$,	TR!$ ↑ HX!$, V#$ ↑ RT#$,	TR#$ ↑ HX#$). 
On the x-axis (↗), –ve elements increase 1°: (V!– ↗ SQ!– ,	RS!– ↗ OG!– , V#– ↗ SQ#– ,	RS/#–  ↗ OG#–); 
N elements increase 1°: 2×(V0 ↗ E0, E0 ↗ NS); and +ve elements separate, so adjoining 
vertices become unit distance apart: (V!$ ↗ V#$, TR!$ ↗ TR#$, RT!$ ↗ RT#$, HX!$ ↗ HX#$). 
On the y-axis (↖), reading backwards, –ve elements separate, so adjoining vertices become 
unit distance apart: (V#– ↖ V!–, SQ#–  ↖ SQ!– , RS#– ↖ RS!–, OG#– ↖ OG!–); ntrl elements increase 1°: 
(E!! ↖ V!!, NS!! ↖ E!!, E#! ↖ V#!, NS#! ↖ E#!); and +ve elements increase 1°: TR!$ ↖ V!$, HX!$ ↖ 
RT!$, TR#$ ↖ V#$, HX#$ ↖ RT#$) (refer Figs. 1–3).  

The Class IV –ve axes are defined as the normal axes of the mid-faces of the triangles of 
the PL TR array, the ntrl axes in two sets of orientations as the normal axes of the mid-edges 
of the PL TR and PL HX arrays, respectively, and the +ve axes as the normal axes of the mid-
faces of the hexagons of the PL HX array, respectively. Hence the PL+ TR array V– and PL– 
HX array HX are –ve, the edges of both polar arrays in two sets are ntrl, while the PL+ TR 
array TR and PL– HX array V– are +ve. The QR TR–HX (TH) array is composed of –ve RXs 
and +ve RTs. Transformations of the constituent polytopes (faces/edges/vertices) of the 8 
Class IV polygonal arrays can then be characterized by axis of the 2.5D schema: 
On the z-axis (↑), –ve elements increase by 1°: (V!– ↑ RX!– , HX!–  ↑ DD!– , V#– ↑ RX#–, HX#– ↑ DD#–); 
ntrl elements separate, so that adjoining vertices became unit distance apart: (V!! ↑ V#!, 2×(E!! 
↑ E#! ), NS!!  ↑ NS#! ), the 2×(E!!  ↑ E#! ) being in 2 sets of different orientations; while +ve 
elements increase by 1°: (V!$ ↑ RT0

+, TR0
+ ↑ RX0

+, V#$ ↑ RT1
+, TR1

+ ↑ RX1
+).  

On the x-axis (↗), –ve elements increase by 1°: (V!– ↗ HX!– , RX!–  ↗ DD!– , V#– ↗ HX#– , RX#–  ↗ 
DD#– ); ntrl elements increase by 1°: (V!!  ↗ E!! , E!!  ↗ NS!! , V#!  ↗ E#! , E#!  ↗ NS#! ); and +ve 
elements separate, so that adjoining vertices become unit distance apart: (V!$ ↗ V#$, TR!$ ↗ 
TR#$, RT!$ ↗ RT#$, RX!$ ↗ RX#$).  
On the y-axis (↖), reading backwards, –ve elements separate, so adjoining vertices become 
unit distance apart: (V#– ↖ V!–, HX#– ↖ HX!– , RX#– ↖ RX!– , DD#–  ↖ DD!– ), ntrl elements increase by 
1°: (E!! ↖ V!!, NS!! ↖ E!!, E#! ↖ V#!, NS#! ↖ E#!); and +ve elements increase 1°: (TR!$ ↖ V!$, RX!$ 
↖ RT!$, TR#$ ↖ V#$, RX#$ ↖ RT#$). (NB, all 2D polytope arrays (Figs. 2 & 3) repeat to infinity). 



 

The snub form is clearly a transitional form, as evidenced in the jitterbug sequences I 
recognized in my early research [2] for each polytope Class I–V contraction SRQR → SnbQR 
→ QR; in Class II, SRCO → SnbCO → CO; and in Class IV, SRTH → SnbTH → TH. The 
Snub polytope in either or both of its enantiomorphs thus sits at the center of the schematic 
2.5D cube its class, mediating the lower and higher diamonds. Class II SnbCO or Class IV 
SnbTH is, as before, between the 1° QR CO or TH and the 2° SRCO or SRTH, respectively.  

The original linear horizontal truncation polytope sequence of PL+ – TP+ – QR – TP– – PL– 
is devolved in the 2.5D schema to a revised ‘M’-shaped sequence; while the original neutral 
linear vertical transcendent sequence now extends to include the null verticial polytope VP.  
 
4.   Conclusion 
This 2.5D schema and revised order of the regular and semi-regular 3D polyhedra and 2D 
polygonal arrays proves vital towards characterizing and appreciating their structural 
morphology, and is applicable across classes; the behavior in one class is perfectly reflected in 
the other classes, as in the exemplar jitterbug sequences. In addition, the schema recognizes 
for each class an additional null quasi-regular polytope VPC, whose virtual properties are 
deducible from the regularities of the schema. The schema exploits the same motif of 
diamond expansion sequence cluster derived from the Class III all-space-filling polyhedral 
honeycombs and Class IV & V polygonal tiling patterns of the plane, so appears archetypal. 

In future research, I anticipate developing this paper to include all five classes I–V of the 
regular and semi-regular 3D polyhedra and 2D polygonal tilings to present a complete revised 
new order in space; and in later work, reapply the schema and the component diamond to the 
five classes I–V of the all-space-filling honeycombs and tilings, in order to gain further 
insight into their structural morphology, with potential applications to lattice structure, bone 
scaffolding, polymer composites, kinetic space structures, and in general, to appreciate and 
appropriately utilize the inherent subtle and profound harmonic structure of empirical space.  
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