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Abstract 

 
In previous research, I classify the proper honeycombs into three symmetry groups, identify the 

component polytopes of !" polyhedra, !! polytopes, and !" polytopes, and advance a schema that 

adequately represents the relationship between the !"# and !!" and their corresponding honeycombs 

[1, 2]. Herein, I describe the expansion sequences that relate honeycomb to honeycomb, and identify 

the clusters of sequences that they form. At each step of these sequences, the lattice cell dimension 

increases by unit length of the edge length of the polyhedra. These sequences are characterized by 

complementary sets of !!"  separating, or morphing by turn, while their respective !"#  project 

(stretch), or expand, respectively, by turn. I find that just four morphing transformations characterize 

each of these sequences: !" → !", !" → !", !" → !", and !" → !". The formal order can be 

generalized to the tessellations of the plane, and suggests a refinement of my earlier metaorder of 

polyhedra (and tessellations) to accommodate the !" polytope, and recognize the common patterns of 

alternating separation and expansion of faces that rigorously relate the 3D polyhedra and 2D 

tessellations for all 5 symmetry classes. The geometry of the sequences and clusters described suggest 

diverse applications, including deployable space structures, transfer interfaces, tissue engineering, new 

materials, metamaterials, sensors, solar cells, battery electrodes, and filters.  

Keywords: polyhedra, honeycomb, array, tessellation, structural morphology, spatial harmony, form, 

order, all-space-filling. 

 

This paper substantially expands my earlier paper “Sequences of the All Space-filling Periodic 

Polyhedral Honeycombs”, published in L. Li et al. (eds.), Proceedings of The Eighth International 

Conference on Information, Tokyo, May 17–18, 2017 [3]. 

 

Contribution 

• Expansion sequences and clusters of the All Space-filing honeycombs are identified. 

• Their expansion characteristics are described as alternating separation and morphing 

of pairs of !!", accompanied by projection and expansion of their respective NEs. 

• The four key morphs of the sequence steps are identified and described. 

• The honeycomb order is extended to the regular & semi-regular planar tessellations. 

• A revision of the author’s metaorder of the polyhedra and tessellations is suggested. 



 

Glossary 

!" : The 4 Great Enablers, of +/– orientation Tetrahedron !!,!!, or truncateD tetrahedron, !!,!!. 

!! : The 8 Primary Polytopes: VerTex !", CuBe !", Truncated Octahedron !", Great Rhomic 

cuboctahedron !" , OctaHedron !" , CubOctahedron !" , Truncated Cube !" , and Small 

Rhombic octahedron !". 

!" : The 10 Neutral Elements: the Diagonal Edge !"  (i.e., √2), (2D) Neutral Vertex !" , 

(transverse) Square !", Rotated Square !", and OctaGon !", and their respective prisms, the 

Diagonal Prism !" (axial square), Axial Edge !", Square Prism !" (neutral cube), Rotated 

Prism !" (rotated cube), and Octagonal Prism !". 

!"# : Reference Cubic Lattice, !"#! and !"#!, each with nodes at the centers of the other’s cubes. 

!"! : Reference Tetrahedral Lattice, there being two for each !"#: !"#!! and !"#!!, !"#!! and !"#!!. 

!3 : √3 axial Vertex “face” of !", !", or !.   !4 : √1 axial Vertex “face” of !" 

!" : √3 axial Triangular face, +ve (upper ∆) !"! of !", !", or !; –ve (up. ∇) !"! of !", !", or !.  

!" : √3 axial Hexagonal face, of !", !", or !. 

 

1. Introduction: Symmetry Classes of the All Space-filing Periodic Polyhedral Arrays 

In previous research [1, 2], I establish that the all-space-filling periodic polyhedral 

honeycombs exhibit three symmetry classes of Class I: {2,3,3|2,3,3}, Class II: {2,3,3|2,3,4}, 
and Class III: {2,3,4|2,3,4}. Instead of considering the various component polyhedra as being 

of equivalent worth, I investigate their qualitative diversity. They form distinct sets that play 

different roles in the overall honeycomb; and different polyhedra play similar roles in 

different honeycombs, in a highly regular manner. I identify the polytope components of 

these honeycombs as being the 4 Great Enablers (!"# ): (!!,!!,!!,!! ); 8 Primary 

Polytopes (!!") in two distinct sets of (!",!",!",!"), which can self-reflexively form 

honeycombs, and (!",!",!", !"), which do not; and Neutral Elements (!"#): (!", !", 

!", !", !"), including the 2D diagonal edge !" and the 0D neural vertex !", and their 

prisms (!", !", !", !", !"), which include the √2 diagonal prism and the regular prism !". 

In reverse order of classes, the 10 distinct Class III {2,3,4|2,3,4} honeycombs may be 

characterized by the alternation of two !!", each situated at the nodes of a Reference Cubic 

Lattice (!"#), the nodes of one lattice being at the centers of the cubes of the other lattice. In 

self-reflexive honeycombs, the two !!" are the same polytope. In both kinds of honeycomb, 

!"# mediate adjoining or adjacent pairs of !!" of the same kind along XYZ axes. In the 

simple lattices, these !"# are developed through the expansion sequences into 1D, 2D or 3D 

polytopes. Figure 1 shows the bicubic 3D schema of the honeycomb order that I have 

previously advanced [1, 2], in which the two !!" are diagonal opposites on either the lower 



 

or upper squares, or are self-reflexive nodes of the upper square. This schema situates the 

various !"# and !!" into a coherent order, with each Class III honeycomb represented as a 

horizontal lower edge, upper diagonal, or vertical (self-reflective) circle of the structure, each 

Class II honeycomb as a long quadrilateral (diamond) section, and the Class I honeycomb as 

the diagonals and one pair of opposite edges of the middle square. I describe each of these 10 

honeycombs of Class III as a simple alternation. 

 
 

Fig. 1. Bicubic 3D metaorder of the !"# and !!" with linkages representing the distinct honeycombs. 

The singular Class I honeycomb is the middle square with dotted lines (i.e. !!:!!:!!:!!, left 

below); the 4 Class II honeycombs are the four long bicubic sectional diamonds (e.g. !":!!|!!: !", 

right); the 6 non-self-reflective Class II honeycombs are the 2 diagonal pairs of the upper square (e.g. 

!":!", upper left), and the 4 edge pairs of the lower square (e.g. !": !", bottom left); and the 4 self-

reflective Class II honeycombs (!":!" is the null case) are the 4 circles at top (e.g. !":!", top right).  

 

The 4 distinct Class II {2,3,3|2,3,4} honeycombs are characterized by the same alternation 

of polyhedra at nodes of the two !"#$; but a further alternation develops of the two sets of 

tetrahedral nodes of either lattice. One !"# alternates nodes of one kind of !" of alternating 

orientation, +ve and –ve, so !"#! =  !"!! + !"!! or !"#! =  !"!! + !"!!, while the other 

!"# alternates nodes of different !!": !"#! = !!! + !!!. !"# are of 0D, 1D or 2D, and do 

not develop into 3D. In my key 3D schema (Fig. 1) [2], the !"# are located in the central 
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square, while the two different !!" are at opposite nodes of the long diagonals of the schema. 

I describe each of these 4 honeycombs of Class II as an alternation of alternations. 

The distinct Class I {2,3,3|2,3,3}  honeycomb is characterized by a more complex 

alternation pattern, where one !"# alternates tetrahedral sets of !! and !!, whilst the other 

!"# alternates tetrahedral sets of !!  and !! : !"#! =  !!! +  !!! , and !"#! =  !!! +  !!! . 

Thus I describe the singular honeycomb of Class I as a true 4-way/fold alternation.  

I recognize 10 + 4 + 1 = 15 distinct honeycombs in all, though one is of zero dimension. 

The 16 honeycombs of Class III show several equivalent honeycombs (!"|!", !"|!"; 

!"|!", !"|!"; !"|!", !"|!"; !"|!", !"|!"; !"|!", !"|!"; and !"|!", !"|!"; and 

thus reduce to 10 distinctive arrays. I recognize the Vertex (!") as a !!; and in consequence, 

recognize a seed honeycomb !"!|!"! that consists of coincident !"!’s and !"!’s in a single 

point. I differentiate the Cubic honeycomb into three forms (i.e., two distinct honeycombs): 

the two equivalent honeycombs !"!|!"! and !"!|!"!; and the self-reflective !"!|!"!. 

 

2. Expansion Sequences of the Regular Honeycombs 

The {2,3,4|2,3,4} and {2,3,3|2,3,4} honeycombs may then be characterized into expansion 

sequences, in which at each step, the lattice cell length increases by unit length of the 

component polyhedra. Of critical note, these sequences may be used to formally interrelate 

the honeycombs into a meaningful metaorder; i.e., they appear to be important organizational 

features of the metaorder of honeycombs. The {2,3,4|2,3,4} honeycombs may thereby be 

differentiated into one Primary, two Secondary, and one Tertiary sequences, each of two 

steps, i.e. 1. Contracted → Intermediate, and 2. Intermediate → Expanded. Figure 2 shows that 

in the first step, the initial Contracted honeycomb can expand in two different ways, into two 

different Intermediate honeycombs of the same lattice size, depending on which set of !!" 

separates, and which set of !!" morphs. In the second step, the complementary process of 

separation and morphing occurs, so that both pathways culminate in the same final Expanded 

honeycomb. These dual pathways of expansion form clusters of sequences that provide a 

coherent order for the class; and there are also cross-class similarities that I later address. 

In the Primary and Tertiary sequences of Class III, the two Intermediate honeycombs are 

simply alternative cases of the same honeycomb, depending on which !! is associated with 

which !"#, so are what I term equivalent honeycombs. In the Secondary sequences, the two 

Intermediate honeycombs are distinct forms, but one sequence cluster is simply the 

alternative case of the other, again depending on which !! is associated with which !"#; one 

Secondary sequence cluster is thus the mirror reflection of the other. 
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Fig. 2. Matrices of 

sequence clusters of Class III, as 

(a) Primary Polytopes 

separate or morph, and 

(b) their respective Neutral Elements 

project or expand. Lattice length 

is shown under each pair. 

 



 

2.1. Simplified Description of the Expansion Sequences 

I now consider the specific expansion sequences of the regular honeycombs. These are the 2-

step sequences of the {2,3,4|2,3,4} honeycombs, in which 3D neutral polyhedra might arise; 

and the 1-step sequences of the {2,3,3|2,3,4} honeycombs, in which 3D !"# do not arise. In 

each case, expansion occurs by the unit length of the polyhedra of the honeycomb. 

Type 1 and 2 expansion sequences are easiest understood by examining the case of the 

!"|!" →  !"|!" / !"|!" →  !"|!" sequence. Space only permits simple coverage here. 

The typical Type 1 {2,3,4|2,3,4} expansion sequence commences at the most contracted 

form of two sets of polyhedra, in this case, !" and !". There are two paths the expansion 

can take to reach the same full expansion. In either pathway, in the first step, one set of !!", 

which are initially in contact, separate from one another, so that adjoining !!" reach a limit 

of unit distance from one another. They retain their relative orientations to one another, and 

remain coaxial on the XYZ axes; the lattice has expanded by 1 unit distance, without the !!" 

changing size. Meanwhile as this lattice expands, the other set of !!" simultaneously morph 

into a different set of !!". So in this particular case, as the !"# of the [!"|!"] honeycomb 

separate from one another in a regular decentralized expansion, the other primary !"# morph 

into !"#, to achieve the [!"|!"] honeycomb. In the second step, the !!" that morphed in 

the first step are retained, but now separate from one another; meanwhile the !!" that 

remained in the first step expansion now simultaneously morph into a different !!. So in this 

example sequence, the primary !"# now separate from one another by unit distance, creating 

neutral !"# between them; meanwhile the other primary !"# simultaneously morph into 

!"#, creating neutral !"# between them. 

But this is just one of the two paths that the two-step expansion from [!"|!"] to [!"|!"] 
can take. In the other path, in the first step, the other primary set of !"# separate from one 

another in a regular decentralized expansion, creating neutral !"# between them; meanwhile 

the remaining primary set of !"# simultaneously morph into primary !"#, to achieve the 

[!"|!"] honeycomb. In the second step, the !!" that morphed in the first step are retained, 

but now separate from one another; meanwhile the !!" that remained in the first-step 

expansion simultaneously morph into different !!". So here, primary !"# now separate from 

one another by unit difference, creating neutral !"# between them; meanwhile primary !"# 

simultaneously morph into primary !"#, creating neutral !"# between them, to end in the 

[!"|!"] honeycomb. The morphs are !" →  !" and !" →  !". 
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Fig. 3. Clusters of Class III  

(a) Secondary A sequences (above). 

(b) Secondary B sequences (below). 

 



 

 

The other Type 1 {2,3,4|2,3,4} expansion sequences are firstly what might be regarded as 

the equivalent honeycomb of that already described, which in practice terms is identical; and 

secondly the !"|!" →  !"|!" / !"|!" →  !"|!" and the !"|!" →  !"|!" / !"|!" →
 !"|!" sequences, which are easier to follow, as both start from !! pairs that are the same as 

each other, and both finish in !! pairs that are the same as each other. In addition, the two 

intermediate honeycombs for each of these sequences may be regarded as equivalent 

honeycombs of one other, so only one path of the two for each sequence need be considered.  

In the primary !"|!" →  !"|!" / !"|!" →  !"|!" sequence, both sets of !!" of the 

most contracted [!"|!"] honeycomb are vertices, and the honeycomb is of zero size; all 

vertices coincide in the one 0D point (but paradoxically are presumed to have unit length 

virtual edges). In the first step of the expansion, one primary set of !"# expands, so that 

(adjacent) !"# assume unit distance from one another. Meanwhile, the other primary set of 

!"# morph into primary !"#, forming a cubic lattice, whose vertices coincide with the cubic 

lattice of vertices of the expanded set of !"#. 

In the second step of the expansion, the previously morphed primary !"# expand to unit 

distance from each other, and in the process, neutral !"# form between adjoining pairs of 

primary !"# . Meanwhile, the other expanded primary !"#  simultaneously morph into 

primary !"#, and in the process, neutral !"# also form between adjoining pairs of (the other) 

primary !"#. Each subarray of primary !"# and its neutral !"# forms a counterform to the 

other subarray - the two arrays are identical, and everywhere interpenetrating; but the two 

subarrays are simply displaced (by (±1,±1,±1)) relative to the other. 

In the greatest expansion sequence of !"|!" →  !"|!" / !"|!" →  !" !" , the 

Contracted form is of two sets of !"# in the !"|!" honeycomb. In the first step, one set of 

!"# in !" face-to-face contact expands to assume unit distance, so that adjoining pairs of 

!"! create neutral !"# between each other; meanwhile the set of !"# morphs to become 

!"#, so that adjoining pairs of GRs create neutral axial OGs between each other, the pairs of 

GRs being in face-to-face contact. The two primary sets of TOs and GRs form the 

Intermediate !"|!" honeycomb. In the second step, the previously morphed primary !"# in 

neutral !" face-to-face contact expand to unit distance apart, while the neutral axial !"# 

project to form neutral !"#; meanwhile the other primary set of !"# in neutral !" face-to-

face contact morphs into primary !"#, so that pairs of adjoining primary !"# develop neutral 

!"# between each other, the neutral !"# thus projecting into neutral !"# separating this set 



 

of !"# . Both sets of !"#  and their respective sets of !"#  together form the expanded 

[!"|!"] honeycomb. 

 

3. The Behavior of the Neutral Elements in the Expansion Sequences  

3.1. Class III Neutral Elements 

In this paper, the expansion sequences of Class III honeycombs have been characterized as in 

the first step, the elements of one set of !!" separate from each other, while the elements of 

the other set morph from one !! into a different !!; meanwhile in the second step, the 

converse occurs. In Class III, adjoining or adjacent pairs of !!" of one kind along the XYZ 

axes are mediated by Neutral Elements, !"#. In the contracted form, these PPs are adjoining, 

meaning that they share at least a vertex, if not an edge or a face: adjoining pairs of !"!’s and 

!"!’s of !"|!" are thus mediated by neutral vertices !"! and !"!, respectively; adjoining 

pairs of !"!’s and !"!’s of !"|!"  are mediated by neutral !"!  and !"! , respectively; 

adjoining pairs of !"! ’s and !"! ’s of !"|!"  are mediated by neutral !"!  and !"! , 

respectively; and adjoining pairs of !"!’s and !"!’s of !"|! are mediated by neutral !"! 

and !"!, respectively. These NEs (in Class III) are all considered to be of {2,2,4} symmetry, 

so they have a primary axis that accords with either the X, Y, or Z axis, the other two axes 

being the remaining Cartesian axes. Separation of one set of PPs is always along an X, Y, or 

Z axis; therefore, it is readily recognized that in this process, the !" will be projected into 

prismatic form. In the first step from the contracted honeycomb to the intermediary 

honeycomb, !" projects to axial edge !" (this is easy to see in !"|!" → !"|!"), while 

rotated square !" projects to rotated cube/prism !". The intermediary stage introduces the 

adjoining !!" !" , !" , !" , and !" . Hence, !"  !"# mediate pairs of adjoining !"#; !" 

mediates pairs of adjoining !"#; !" mediates pairs of adjoining !"#; and !" mediates pairs 

of adjoining !"#, all along XYZ axes. In the second step of the expansion, these project 

along with their separating PPs, so the square mediating adjoining cubes (!": !":!") 

projects and separates, respectively, to !": !":!"; !":!":!" to !":!":!!; !": !": !" to 

!": !": !"; and !":!":!" to !":!":!". So !" → !" and !" → !". This accounts for 

all of the projecting neutrals in Class III. 

However, there are also the NEs that mediate or separate adjoining or adjacent pairs of 

morphing PPs. Each PP both separates and morphs in turn, so the initial !" can be assumed 

to be as before. In this case, instead of projecting, the !" expands as its !!" morph. This can 



 

best be understood in the figures, but the separations:expansions:separations (recalling that 

these are either !!!:!"!:!!! or !!!:!"!:!!!, not mixes) are:  

!":!":!" → !": !":!"and !":!":!" → !": !":!", 

!":!":!" → !": !": !" and !":!":!" → !": !": !", 

!":!":!" → !":!":!" and !":!":!" → !":!":!", and 

!":!":!" → !":!":!" and !":!":!" → !":!":!". 

So each morph of !! to !!′ is associated with two expansions of neutral elements, a lower 

and a higher, so !!  morph !" → !"  is associated with NE expansions !" → !"  and 

!" → !"; !" → !" with !" → !" and !" → !"; !" → !"  with !" → !"  and !" → !", 

and !" → !"  with !" → !"  and !" → !" . This then accounts for all the expanding 

neutrals in Class III. In summary, the !"#  of separating !!"  project, while the !"#  of 

morphing !!" expand. 

(Note that in this paper, lattice expansion with constant polyhedral edge length is assumed; 

the complementary perspective would be to consider the lattice dimension as constant, and 

the edge length of the polyhedra reducing at each expansion step). 

3.2. Class II Neutral Elements 

The neutral polytopes can also be considered in Class II. During the two expansion 

sequences, as the !"# separate, the !"# (√2 edges) that mediate these !"# of !! + !– and 

!! + !! in each contracted form, project to become !"# (axial rotated squares) in the 

expanded form, respectively. Meanwhile, in the Primary Sequence, the !"#  mediating 

alternating !"# and !"# along the XYZ axes expand to become !"#; while in the Secondary 

Sequence, the !"#  mediating alternating !"#  and !"#  along the XYZ axes expand to 

become !"#. The rigorous similarities can be observed between the two sequences. 

 

3.3. Class I Neutral Elements 

For complete coverage, neutral polytopes in the singular Class I honeycomb (along the √1 

axes) consist of diagonal edge !"#, so that one set of XYZ axes consist of strings of 

!!:!"↘:!–: !"↙:!!: !"↘:!–: !"↙:!!…, while the other set of XYZ axes consist of 

strings of !–:!"↙:!!: !"↘:!–: !"↙:!!: !"↘:!–… (where !"↘ and !"↙ for a given XYZ 

axis are at right angles). !"# of !":!"!:!3:!"–:!" … also develop along the √3 axes, but 

in this paper, I do not consider the √2 or √3 relationships of !"# in detail. This class, having 

just one distinct form, does not develop sequences. 



 

4. The Four Key morphs that Characterize the Various Expansion Sequences  

4.1. The Key Morphs in Class III 

Inspection of the Class III four-fold clusters of four-fold honeycombs and their sequences 

reveals the elegant regularity of the separations and morphs of the PPs across the entire class. 

Each separation of a PP occurs just twice, so predictably there are 8 kinds of separations: 

(!" → !" , !" → !" , !" → !" ,  !" → !" ,  !" → !" ,  !" → !" ,  !" → !" ,  !" → !" ). 

Each morph of a PP into another PP occurs four times, so there are just 4 kinds of morphs: 

!" → !", !" → !", !" → !", !" → !". Morph pairs are uniquely determined by their 

!!" having common polytopes as ‘faces’ on their √3 axes: !3 for !",!"; !"! for !", !"; 

!"– for !",!", and !" for !",!". So in a certain sense, each morph could be regarded as 

the respective √3 axis faces separating away from each other by unit distance along the XYZ 

axes, as one contracted polyhedron becomes its expanded morph. 

4.2. The Key Morphs in Class II 

Inspection of the Class II two-fold clusters of two-fold honeycombs and their sequences 

reveals further elegant regularity of the separations of the !"# and the morphs of the !!" 

across that entire class. In this case, each separation of a !" occurs just once, there thus being 

four kinds of separation, but these now occur in pairs, so (!! → !! and !! → !!), and 

(!! → !! and !! → !!). Meanwhile, the same four morphs occur; each morph occurs just 

once, but these also appear in pairs, so (!" → !"  and  !" → !" ), and (!" → !"  and 

!" → !"). This represents a natural pairing of morphs that occurs. At the same time, there is 

a natural pairing of !!" according to their √1 faces, so each pair has the same √1 face. The 

behavior of the !"# is described in the penultimate paragraph of the preceding section. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. !" → !"  and !" → !" , and !" → !"  and !" → !"  Morphs of Class II, with 

progressions of their NEs. (In Class III, there is just one of these morphs per sequence step).  



 

5. Extension of the Order to include the {2,3,6} and {2,4,4} Tessellations of the Plane 

One of the genuine delights of research is the recognition of the validity of the postulates 

made when they suggest extensions to related behavior and structure, and when the 

predictions they allow are then confirmed through inspection and experimental investigation. 

This occurred in my initial seminal paper on the metaorder of the regular and semi-regular 

polyhedra [4] (considered as individual entities, not honeycombs), when the common formal 

structure for the 3D symmetries of {2,3,3}, {2,3,4}, and {2,3,5} firstly suggested equivalent 

snub forms each class, which enabled me to generalize the {2,3,3} jitterbug system of R. 

Buckminster Fuller into the equivalent {2,3,4} and {2,3,5} jitterbug systems; and secondly in 

the generalization of that 3D metaorder of polyhedra to rigorously account for the regular and 

semi-regular 2D tessellations of the plane, via the {2,3,6} and {2,4,4} symmetry classes 

(together with their corresponding 2D jitterbug systems via the corresponding skew forms). 

Here, I came to realize that the 3D honeycombs would likely be analogued in 2D by the 

tessellations of the plane. And indeed, I have been able to generalize the component diamonds 

of my Class III sequence clusters, with alternating successions of separation and expansion, to 

rigorously classify the two classes of the regular and semiregular tessellations of the plane, of  

{2,3,6} and {2,4,4} symmetry, respectively. Rather than exhaustively describe these, which 

space here does not permit, I simply illustrate their respective formal orders (Figs. 5 & 6). 

 

6. Extension of the honeycomb order to revision of the original metaorder 

of regular and semiregular polyhedra and tessellations of the plane  

The experimental investigation into the extension of the order to the 2D tessellations, and its 

clear validity, in turn led to reinvestigation of my original order of the regular and semiregular 

3D polyhedra (and 2D tessellations). The initial impetus was the recognition of the virtual !" 

as a !!, which suggested that it should be integrated into the metaorder, at least for the 

{2,3,4} symmetry class. Clearly, the !" !! belonged along the main vertical axis, and fitted 

below the horizontal truncation axis. I then mapped the four honeycomb morphs and the pairs 

of Class II honeycomb PPs onto my original metaorder. Although the pairs precisely mirrored 

the morphs, I was frustrated by the apparent irregularity this presented between the two 

sequence clusters involved; they were clearly parallel, and should have the same form. I was 

able to resolve this by restructuring the two-axis structure of the original metaorder into two 

overlaid diamonds (Fig. 7), thus describing a fundamental differentiation of the now 8 {2,3,4} 

!!" into two parallel sets of 4, a lower, and an upper set, (the only drawback being that the 

horizontal truncation sequence !" ↔ !" ↔ !" ↔ !" ↔ !" now becomes an “M” shape).  
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Fig. 5. Sequence clusters 

of the {2,3,6} symmetry 

regular and semi-regular 

tessellations of the plane. 
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Fig. 6. Sequence clusters 

of the {2,4,4} symmetry 

regular and semi-regular 

tessellations of the plane. 

 

 

 

 

 

 

 

 

 

 

 



 

 
Fig. 7. Proposed revision of the author’s metaorder of the regular and semiregular polyhedra for the all-

space-filling {2,3,4} !!". Numbers under !!" indicate XYZ polyhedral size, which increases by 1 up 

right ↗, and by √2 up left ↖, and also vertically ↑. The +√2 separation length for ↖ can be considered as 

a +1 separation along the √2 axis. The PPs exhibit similar expansion clusters to the honeycombs. 

 

Further, the snub polyhedron (in two enantiomorphs; not shown) then acted as a bridge 

between the two clusters. The lower cluster proceeds by separation and expansion of faces 

from contracted !" seed through intermediary male !" and female !" , to expanded !" 

flower. The !" then symmetrically contracts through a jitterbug-like system to the contracted 

!" seed of the upper cluster. Through separation and expansion of faces, this contracted !" 

seed then proceeds through intermediary male !" and !" to expanded !" flower. Elements 

of the two sets rigorously accord as: !" → !", !" → !", !" → !", !" → !". The up-left 

direction ↖ accords with the √1 faces separating; the up-right direction ↗ accords with the √3 

faces separating; and the vertical upward direction ↑ accords with the √2 surface polytopes 

separating, all with beautiful regularity. In addition, the same pattern related {2,3,3} and 

{2,3,5} sets of 3D polyhedra; and also applied to the {2,3,6} and {2,4,4} 2D tessellation sets. 

I could appreciate by projective geometry how the pattern on the infinite plane could also 

be seen on the “spherical” surface of the finite polyhedra, as the center of the plane moves 

from infinity into the finite realm; while the (all-space-filling) 3D honeycombs should parallel 

or analogue the (all-space-filling) 2D tessellations, I don’t yet clearly grasp that relationship.  
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In future research, I will describe this revision of my formal metaorder of the regular and 

semiregular polyhedra and tessellations in detail, as it is critical to a proper understanding of 

these polytopes, and a metaorder that carries through to the metaorder of the honeycombs. 

 
7. Conclusion 

The transformational geometry of these honeycomb sequences offer potential for real-world 

structures and behavior, e.g., nanoscale engineering (new materials, micro-architectured 

materials [5], metamaterials), transfer interfaces (tissue engineering, battery electrodes, 

filters), environmental response (solar cells, sensors), kinetic architectural and engineering 

structures (space frames), and dynamic structures in microgravity for deployment in Space 

(antennae, space habitations and stations). I hope to address this potential in future research, 

after first more fully elucidating the sequences, sequence clusters, and the integral properties 

of the key polyhedral honeycombs. Proper understanding of the spatial order, including the 

transformations of the expansion sequences, and the remarkable consistency of the patterns 

that maintain unit edge length and constrained √1 and √2 orientations to the cardinal XYZ 

cubic lattice will enable designers to better utilize these beautiful forms, whilst encouraging 

further research into their coherent integrity of harmonic pattern, which reveals in some 

measure the extraordinary nature of empirical space. 
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