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Abstract 
 

I have previously classified the proper honeycombs into three symmetry groups, identified the 

component polytopes of !" polyhedra, !! polytopes, and !" polytopes, and advanced a schema that 

adequately represents the relationship between the !"# and !!" and their corresponding honeycombs 

[1, 2]. Herein, I briefly describe the expansion sequences that relate honeycomb to honeycomb, where 

complementary sets of !!" separate or morph by turn, while their respective !"# stretch or expand. 
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1. Introduction: Symmetry Classes of the All Space-filing Periodic Polyhedral Arrays 

The all-space-filling periodic polyhedral honeycombs exhibit three symmetry classes of 

{2,3,4|2,3,4} , {2,3,3|2,3,4} , and {2,3,3|2,3,3} . The polytope components of these 

honeycombs are the 4 Great Enablers (!"#): (!!,!!,!!,!!); 8 Primary Polytopes (!!") in 

two distinct classes of (!",!",!",!"), which can self-reflexively form honeycombs, and 

(!",!",!", !"), which do not; and Neutral Elements (!"#): (!", !", !", !", !") and 

their prisms (!", !", !", !", !"), which include the 2D !" and the non-semiregular !". 

The 10 distinct {2,3,4|2,3,4} honeycombs are characterized by the alternation of two !!", 

each situated at the nodes of a Reference Cubic Lattice (!"#), the nodes of one lattice being 

at the centers of the cubes of the other lattice. In self-reflexive honeycombs, the two !!" are 

the same polytope. In both kinds of honeycomb, !"# mediate adjoining pairs of !!" of the 

same kind along XYZ axes. In the simple lattices, these !"# are developed through the 

expansion sequences into 1D, 2D or 3D polytopes. In the bicubic 3D schema of the 

honeycomb order that I have previously advanced [1, 2], the two !!" are diagonal opposites 

on either the lower or upper squares, or are self-reflexive nodes of the upper square. Each of 

these 10 honeycombs might be described as a simple alternation. 

The 4 distinct {2,3,3|2,3,4}  honeycombs are characterized by the same alternation of 

polyhedra at nodes of the two !"#$; but have a further alternation that develops of the two 

sets of tetrahedral nodes of either lattice. One !"# alternates nodes of one kind of !" of 

alternating orientation, +ve and –ve, so !"#! =  !"!! + !"!!, while the other primary cubic 

lattice alternates nodes of different !!": !"#! = !!! + !!!. !"# are of 0D, 1D or 2D, and 



do not develop into 3D. In my 3D schema, the !"# are located in the central square, while the 

two different !!" are at opposite nodes of the long diagonals of the schema [2]. Each of these 

4 honeycombs might be described as an alternation of alternations. 

The distinct {2,3,3|2,3,3}  honeycomb is characterized by a more complex alternation 

pattern, where one !"#  alternates tetrahedral sets of !!  and !! , whilst the other !!" 

alternates tetrahedral sets of !!  and !!: !"#! =  !!! +  !!! , and !"#! =  !!! +  !!! . This 

shows a true 4-way/fold alternation. I recognize 10 + 4 + 1 = 15 distinct honeycombs in all. 

 
2. Expansion Sequences of the Regular Honeycombs 

The {2,3,4|2,3,4} and {2,3,3|2,3,4} honeycombs may then be characterized into expansion 

sequences. The {2,3,4|2,3,4}  honeycombs may be differentiated into one Primary, two 

Secondary, and one Tertiary sequences, each of two steps, i.e. 1. Contracted → Intermediate, 

and 2. Intermediate → Expanded. In the first step, the initial Contracted honeycomb can 

expand in two different ways, into two different Intermediate honeycombs of the same lattice 

size, depending on which set of !!" separates, and which set of !!" morphs. In the second 

step, the complementary process of separation and morphing occurs, so that both pathways 

culminate in the same final Expanded honeycomb. In the Primary and Tertiary sequences, the 

two Intermediate honeycombs are simply alternative cases of the same honeycomb, 

depending on which !! is associated with which !"#, so are in a sense mirror reflections. In 

the Secondary sequences, the two Intermediate honeycombs are distinct forms, but one 

sequence is simply the alternative case of the other, again depending on which !!  is 

associated with which !"#; one Secondary sequence is thus the mirror reflection of the other. 

2.1 Simplified Description of the Expansion Sequences. 

We now consider the specific expansion sequences of the regular honeycombs. These are the 

2-step sequences of the {2,3,4|2,3,4} honeycombs, in which 3D neural polyhedra might arise; 

and the 1-step sequences of the {2,3,3|2,3,4} honeycombs, in which 3D !"# do not arise. 

Type 1 and 2 expansion sequences are easiest understood by examining the case of the 

!"|!" →  !"|!" / !"|!" →  !"|!". Limited space only permits simple coverage here. 

In a typical Type 1 {2,3,4|2,3,4} expansion sequence, we commence at the most contracted 

form of two sets of polyhedra, here !" and !". There are two paths the expansion can take 

to reach the same full expansion. In either pathway, in the first step, one set of !!", which are 

initially in contact, separate from one another, so that adjoining !!" reach a limit of unit 

distance from one another. They retain their relative orientations to one another, and remain 

coaxial on the XYZ axes; the lattice has expanded by 1 unit distance without the !!" 



changing size (in this paper, lattice expansion with constant polyhedral edge length is 

assumed). As this lattice expands, the other set of !!" morphs into a different set of !!". So 

in this particular case, as the !"# of the [!"|!"] honeycomb separate from one another in a 

regular decentralized expansion, the other primary !"#  morph into !"# , to achieve the 

[!"|!"] honeycomb. In the second step, the !! that morphed in the first step is retained, but 

goes through a similar expansion; while the !! that remained in the first step expansion now 

morphs into a different !!. So the primary !"# now expand from one another by unit 

distance, creating neutral !"# between them, while the other primary !"# simultaneously 

morph into !"#, creating neutral !"# between them. 

But this is just one of the two paths that the two-step expansion from [!"|!"] to [!"|!"] 
can take. In the other path, in the first step, the other primary set of !"# separate from one 

another in a regular decentralized expansion, creating neutral !"# between them, while the 

remaining primary set of !"# morph into primary !"#, to achieve the [!"|!"] honeycomb. 

In the second step, the !!" that morphed in the first step are retained, but go through a similar 

unit expansion; while the !!" that remained in the first-step expansion morph into different 

!!". So here, primary !"# now expand from one another by unit difference, creating neutral 

!"#  between them, while primary !"#  morph into primary !"# , creating neutral !"# 

between them, to end in the [!"|!"] honeycomb. The morphs are !" →  !" and !" →  !". 

The other Type 1 {2,3,4|2,3,4} expansion sequences are firstly what might be regarded as 

the enantiomorph of that already described, which in practical terms is identical; and secondly 

the !"|!" →  !"|!" / !"|!" →  !"|!"  and !"|!" →  !"|!" / !"|!" →  !"|!" 

sequences, which are somewhat easier to follow, as both start from !! pairs that are the same 

as each other, and both finish in !! pairs that are the same as each other. In addition, the two 

intermediate honeycombs for each of these sequences may be regarded as enantiomorphs of 

one other, so only one path of the two for each sequence needs to be considered.  

In the primary !"|!" →  !"|!" / !"|!" →  !"|!" sequence, both sets of !!" of the 

most contracted [!"|!"] honeycomb are vertices, and the honeycomb is of zero size; all 

vertices coincide in the one 0D point (but with unit length virtual edges). In the first step of 

the expansion, one primary set of !"# expands, so that (adjacent) !"# assume unit distance 

from one another. The other primary set of !"# morph into primary !"#, forming a cubic 

lattice, whose vertices coincide with the cubic lattice of vertices of the expanded set of !"#. 

In the second step of the expansion, the previously morphed primary !"# expand to unit 

distance from each other, and in the process adjoining pairs of primary !"# create neutral 



!"#  between each other. The other expanded primary !"#  simultaneously morph into 

primary !"#, and in the process, adjoining pairs of primary !"# also form neutral !"# 

between each other. Each array of primary !"# and its neutral !"# forms a counterform to 

the other array - the two arrays are identical, but are simply displaced relative to the other. 

In the greatest expansion sequence of !"|!" →  !"|!" / !"|!" →  !" !" , the 

Contracted form is of two sets of !"# in the !"|!" honeycomb. In the first step, one set of 

!"# in !" face-to-face contact expands to assume unit distance, so that adjoining pairs of 

!"# create neutral !"# between each other, while the set of !"# morphs to become !"#, so 

that adjoining pairs of GRs create neutral axial OGs between each other, the pairs of GRs 

being in face-to-face contact. The two primary sets of TOs and GRs form the Intermediate 

!"|!" honeycomb. In the second step, the previously morphed primary !"# in neutral !" 

face-to-face contact expand to unit distance apart, while the neutral axial !"# stretch to form 

neutral !"#. The other primary set of !"# in neutral !" face-to-face contact morphs into 

primary !"#, so that pairs of adjoining primary !"# develop neutral !"# between each other, 

the neutral !"# thus stretching into neutral !"# separating this set of !"#. Both sets of !"# 

and their respective sets of !"# together form the expanded [!"|!"] honeycomb. 

 
Conclusion 

These honeycomb sequences offer potential for real-world structures and behavior, e.g. 

nanoscale engineering, environmental response, kinetic architectural and engineering 

structures, and dynamic structures in microgravity for deployment in Space. I hope to address 

this potential in future research, after first more fully describing the sequences. Proper 

understanding of the spatial order, including the transformations of the expansion sequences, 

and the remarkable consistency of the patterns that maintain unit edge length and constrained 

√1 and √2 orientations to the cardinal XYZ cubic lattice will enable designers to better utilize 

these beautiful forms, whilst encouraging further research into their coherent integrity of 

harmonic pattern, which reveals in some measure the extraordinary nature of empirical space. 
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