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Abstract 
My earlier polyhedral order suggests a meta-order to the all-space-filling periodical honeycombs. 

Polyhedral pairs mate along axes of reference cubic and tetrahedral lattices: pairs of Great Enablers 

(GEs), the positive and negative tetrahedra and truncated tetrahedra; pairs of GEs and the Primary 

Polytopes (PPs); and pairs of PPs. GE:GE, GE:PP and PP:PP matings correlate with the symmetry 

groups of the honeycombs. Matings occur in natural pairs along each axis: a PP mates with just two 

PPs, though one might be identical. Pairs display one-to-one correspondence with the honeycombs. 

Differentiating the PPs into two groups of four indicates an adequate meta-order. 
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1. Introduction 
This research continues previous research into the regular and semiregular polyhedra [1]. 

In that work, contemplation of the fundamental spatial order of these polyhedra suggested the 

existence of a comprehensive pattern that would properly accommodate these entities into a 

satisfactory order. This order consists of three classes of polyhedra, according to their 

symmetry group {2,3,3}, {2,3,4}, or {2,3,5}, and extends to {2,3,6} and {2,4,4} symmetry 

groups to accommodate the regular and semi-regular two-dimensional tilings of the plane.  

The apprehension of this elegant order of polyhedra led me to suspect the existence of a 

comparable order that would embrace the periodic honeycombs – the very limited number of 

periodic arrays of regular and semi-regular polyhedra that fill space, of which the cubic 

lattice is the most obvious. By “comparable” here I mean an order that would exhibit a 

similar elegance, beauty, and integrity; and an order that would accommodate - as particular 

cases - each of the all-space-filling periodic honeycombs. As with the polyhedral order, I 

consider it likely that alternate “colorings” of polyhedra (paralleling alternate coloring of 

polygonal faces in two-dimensional tilings e.g. the checker-board pattern) would extend the 

number of such honeycombs (paralleling the extension of the number of regular and semi-

regular polyhedra from 5 and 13 to 6 and 18, respectively, with counting each pair of 

enantiomorphs as one, in my earlier order of the regular and semi-regular polyhedra [1]). 



 

In the current series of 3 papers, of which this present paper is part, my intuition is that 

such an order ought to exist, given the intense regularity of each of its potential components. 

As far as I am aware, such a proper accounting of this order has yet to be presented, 

notwithstanding Critchlow’s [2], Grünbaum’s, and Shephard’s valuable contributions [3, 4]. 

The research detailed in this series of papers consists of discerning such a meta-order. 

The first paper of this series starts to address the natural order of polyhedral honeycombs 

[5], and should be read in conjunction with this paper. In it, I identify positive and negative 

tetrahedra and truncated tetrahedra as constituting what I term the four Great Enablers 

!": !!/!,!!/! = { !!,!!,!!,!!}. I identify eight Primary Polytopes, in which I include 

the 0-D VerTex !" (hence my use here of polytopes, rather than polyhedra), together with 

the Truncated Octahedron, Small Rhombic cuboctahedron, Great Rhombic cuboctahedron, 

CubOctahedron, CuBe and Truncated Cube - !!: { !",!", !",!",!",!",!",!" }. I also 

identify three restricted Neutral Elements, where they develop as 3-D polyhedra, as 

!"!"# = { !",!",!" } i.e. the Square Prism, Rotated (square) Prism (rotated by π/4), and 

Octagonal Prism, or alternatively, seven complete secondary Neutral Elements of 0-D, 1-D, 

2-D or 3-D polytopes !"!"#: { !", !", !", !", !",!",!" }. I then present an overview of 

their honeycombs. Although the Square Prism and Rotated square Prism are simply cubes, 

there are good reasons for including these as distinct entities; and although technically the 

Octagonal Prism is not a regular or semi-regular polyhedron, it should also be included as a 

honeycomb element. These reasons become evident when viewing colored illustrations of the 

honeycombs, as they reveal a deeper theoretical consistency, particularly as regards 

expansion/contraction sequences; but as secondary elements they are of less importance. 

This paper, which I regard as Part 2.5 of the series of 3, consolidates, revises, and 

substantially develops the research of earlier papers [6-8], in which I discern a natural order 

among these various polytopes, according to how they mate with one another, by meeting in 

regular fashion along relevant 1, 2 and 3 cubic axes; and in which I describe how this 

potential order relates to the honeycombs. So I address how the !"# relate one to another; 

how they relate to the !!"; and how the !!" relate one to another independently of the !"#. 

I structure this paper as follows: Section 2 addresses axial mating of polytopes along 1, 

2 and 3 axes of reference cubic and tetrahedral lattices. Section 3 investigates !":!" 

mating, and shows how this characterizes the singular {2,3,3|2,3,3} honeycomb. Section 4 

investigates !":!!  mating, and how this correlates with the four distinct {2,3,3|2,3,4} 
honeycombs. Section 5 explores !!:!! mating, and how this correlates with the ten distinct 

{2,3,4|2,3,4} honeycombs; and shows how the !!" can be formally differentiated into two 



 

 

groups of four, this differentiation being crtitical. Section 6 presents a new structural model 

of interrelationship of the !"# and two groups of !!" in correlation with the honeycombs. I 

conclude by suggesting further research into the meta-order of the honeycombs, which 

envisages a shift of emphasis from mating of polyhedra to alternation of nodal lattices. 

 

2. The Possible Axial Relationships of Polytope Pairs 
The periodic honeycombs exhibit obvious reference tetrahedral or cubic lattices 

(depending on the specific lattice). It therefore makes sense to situate individual polyhedra 

(or more generally, polytopes) within an orthogonal reference system, which can 

accommodate both (as in Fig. 1, right). These polytopes exhibit relationships of one to 

another along the XYZ axes, diagonal axes, and long diagonal axes of the cube and cubic 

lattice; for convenience I refer to these axes as their 1, 2, and 3 axes, respectively. I 

determine the relationship of polytope to polytope on the basis of whether they are 

compatible or not: i.e., whether they can mate together, at either a vertex, a transverse (or 

occasionally axial) edge, or an axial (or occasionally transverse) face. I then differentiate this 

mating as proximal, where they make actual contact (vertex, edge or face); or distal, i.e. 

through a secondary neutral intermediary element (which might be an axial edge, neutral 

face, or neutral polyhedron (a prism)). For example, it is obvious that !" and !" do not mate 

along a 1 axis (square-to-vertex), nor do they mate along a 2 axis (edge-to-vertex), but 

they do mate along a 3  axis (vertex-to-vertex). Again, !" and !" do not mate along a 1 

axis (rotated square-to-vertex), nor do they mate along a 3 axis (hexagon-to-triangle), but 

they do mate along a 2  axis (diagonal transverse edge-to-edge). 

 

3. How do !":!" Pairs mate? 
I first consider the !"#, which differ from the !!" and !"# in that they do not develop 

{2,3,4} symmetry, and develop only {2,3,3} symmetry on just the 1 axes and on alternating 

! and ! tetrahedral 3 axes. Without loss of generality, I define positive and negative !" to 

be as shown in Fig. 1, left; and the positive and negative !" to be those that are then 

developed from their respective solid. 

These matrices clearly show that !":!" axial matings always occur in pairs, e.g. on the 

1 axis, !! mates with !! and !! ; on the  3!
!

 axes, !! mates with !! and  !!. This axial 

mating of a particular polytope with a specific pair of polytopes applies in general. 
 



 

 

Fig. 1. Left: The four Great Enablers (GEs): D+ is the truncation of T+, D– of T–. 

Right: ! (dashed) and ! (solid) √3 axes within T+, within its cube. 

 

Table 1. Matrices of GE:GE pairs from top left √1, top right  !√3, 

bottom left !√3, and bottom right both ! and  ! √3 axes. 

 
For the !"#, firstly, the 2 diagonal edge elements of a polyhedron on each 1 axis 

alternate in orientation from top/side to bottom/opposite side. Secondly, the facial elements 

on each pair of coaxial ! and ! 3 axes change between triangles and hexagons, both of 
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which have an associated orientation. This orientation is obvious in the case of the triangles, 

which demonstrate a 180° rotational phase shift (which I show as up- or down-ward pointing, 

though in a honeycomb these lie in multiple directions). In the case of the hexagons, I 

indicate this in notation by the appendage of an extended triangle; for vertices, a small line.  

Figure 2 shows the axial mating patterns. The matrices reveal the quite highly 

constrained proper relations between !" and !". A !" mates with the same polyhedron of 

opposite sign, or with the other !" polyhedron of opposite sign along the 1 axes; but it 

does not properly mate with either !" of its own sign along those axes (it doesn’t mate with 

itself, or with the other polyhedron of the same sign). A !" only mates with one of its 

opposite sign, or with the other !" of the same sign as itself along the ! and ! 3 axes; but 

it does not properly mate with itself, or with the other !" polyhedron of the opposite sign 

along those axes.  

 

Fig. 2. GE pairings: on √1; ! √3; ! and ! √3; and √1 and both √3 axes. 

 
The singular {2,3,3|2,3,3} honeycomb (of tetrahedra and truncated tetrahedra) meets 

these constraints. In my earlier paper on the polyhedral honeycombs [7], I describe this 

particular honeycomb as a four-way alternation, or mix-and-match. This solitary honeycomb 

provides four permutations, according to which !"  associates with which reference 

tetrahedral lattice, i.e.: 
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4. How do GE:PP pairs mate? 

Consider now the potential relations between !"#  and !!" . On the 1  axes, !"# 

develop only transverse diagonal edges, but no !! does (for !" and !", the transverse edge 

is on the 2 axis, and the 1 axis element of the !" is the rotated square, which is merely 

bounded by non-axial diagonal edges). Hence, they do not mate on these 1 axes. The !"# 

do not develop symmetry on 2 axes, so they do not mate on those axes. Therefore, how do 

!"# and !!" relate on the 3 axes? 

Once again, we observe that the potential matings of polytopes are constrained. On the ! 

and ! 3 axes, !" mate only with !"# or !"#, by vertex; or with !"# or !"#, by downward 

pointing triangle. !" mate only with !"# and !"#, by upward pointing triangle; or with !"# 

and !"#, by hexagon. Each !" mates with one set of four of the !!!: 

!: { !",!"; !",!" } 
!: { !",!";!",!" } 

Tables 2 and 3 show the pairings, and arrays. Note the arrowed expansion sequences. 

 
Table 2. Matrix of GE:PP for ! + ! √3 Axes.  

  
 

Table 3. Corresponding matrix of {2,3,3 | 2,3,4} Arrays. 

 

Taken together, Tables 2 and 3 show that the pairings of mateable polyhedra of Table 2 

for the 3 !! axes correlate with the possible 2,3,3|2,3,4  arrays of Table 3, i.e.: 
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5. How do PP:PP pairs mate? 

Using a similar procedure, I compare pairs of !! along the 1, 2, 3 axes, to determine 

their relationships of one to another on the basis of whether they are compatible or not, i.e. 

whether they mate, at either a vertex, a (transverse or occasionally axial) edge, or an (axial or 

occasionally transverse) face. In the case of !!:!!, for {2,3,4|2,3,4} symmetry, this can be 

proximal, where they make actual contact (by vertex, edge or face) - or distal, through a 

secondary neutral intermediary (which could be an axial edge, neutral polygonal face, or 

neutral polyhedron - a prism). While this could also be explored for the !":!" and the 

!":!! cases, it is not applicable to the all-space-filling periodic honeycombs, which are the 

subject of this research. Nor is the potential use of antiprismatic neutral elements, 

particularly the !", to deal with the alternation in orientation of triangular faces, though 

rather intriguing arrays can be imagined from the !" !"  that are not all-space-filling e.g. 

!" !" , and !" !" .  

This comparison is striking, and demonstrates the same behavior observed earlier for the 

!!:!" and !":!! matings. For each axial case, the matings of polytopes form natural 

pairs, and these pairs differ for each axis. This formal behavior is beautiful to appreciate. 

 

 

Fig. 3. Two groups of four PPs with √3 axis matings: left: non-self-reflexive PPs share 

double relations with each of two neighbors (e.g. OH:CO, CO:OH, CO:SR, SR:CO), and do 

not mate with their opposite; and right: self-reflexive PPs where larger circles denote self-

reflexive partnerships (e.g. GR:GR), and diagonals denote double relations with opposites 

(e.g. GR:TO, TO:GR), but PPs do not mate with their neighbors. 

 

Figure 3 shows that in this !!:!! case, further complexity develops on the 3 axes. (In 

this figure, the connections are directed; so in the right figure of self-reflexive !!", though it 

might appear there are four lines of connection (2 straight diagonals, 2 ends of the self-



 

reflexive circle), two (one shown as straight, one circular) are outward (“mater”) and two are 

inward (“matee”), as each !! mates with just two !!": itself and its diagonal opposite).  

Figure 3 above and Table 4 below show that these natural pairs for the various axes are: 

√1 pairs: 1 pairs : { (GR,TC), (CB, SR), (TO, CO), (VT,OH) } 
As noted above, Table 3 shows these √1 pairs accord with the {2,3,3|2,3,4} honeycombs: 

!! !"
!" !!    ,   !

! !"
!" !!    ,   !

! !"
!" !!    ,   and   !

! !"
!" !!    . 

Taken together with their self-reflexive pairings: 

=  { GR: (GR,TC), CB: (CB, SR),TO: (TO, CO),VT: VT,OH ,
TC: (TC,GR), SR: (SR, CB), CO: (CO,TO),OH: (OH,VT) } 

√2 pairs:  2 pairs :  (GR, SR), (TC, CB), (TO,OH), (CO,VT)  

These pairs do not correlate with any honeycomb. Together with self-reflexive pairings: 

=  { GR: (GR, SR), CB: (CB,TC),TO: (TO,OH),VT: VT,OH ,
TC: (TC, CB), SR: (SR,GR), CO: (CO,VT),OH: (OH,TO) } 

√3 pairs: 3 self– reflexive pairs :  GR,TO , (CB,VT)  

   = { GR:GR,TO:TO, CB: CB,VT:VT,GR:TO,TO:GR, CB:VT,VT: CB } 
 3 non– self– reflexive pairs : { OH: CO,OH:TC, SR: CO, SR:TC } 

  = { CO: OH, SR ,OH: TC, CO ,TC: (SR,OH), SR: (CO,TC) } 
Table 6 shows √3 pairs correlate one-to-one with corresponding {2,3,4|2,3,4} honeycombs: 

!" !" , !" !" , !" !" , !" !" , !" !" , !" !" , !" !" , !" !" ,  
!" !" , !" !" , !" !" , !"|!" , [!"|!" , !" !" , !" !" , !" !"  . 

On the 1 and 2 axes, each PP is self-reflexive - it mates with itself, as well as with just 

one other, its pair. However, on the 3 axes, the situation changes. While the four !!" that 

do not have triangular faces are self-reflexive - each mates with itself, while it also mates 

with just one other, the other four !!" that do have triangular faces, which may alternate in 

rotational phase angle (i.e. orientation - point up or down). This means that those !!" are 

non-self-reflexive, as each !! cannot mate with itself, because the direction of apex flips 

between upper and lower. Placing these four in square array, Fig. 3 shows that each mates 

with its two neighbors, but not with its opposite. In 3 matrices, common mating conditions, 

situated in overlapping squares, accord with the expansion/contraction sequences of arrays 

discussed in my earlier paper in this series [5] (which I recommend be read with this paper). 

The patterns of pairings on the ! and ! √3 axes of !":!", !":!! and !!:!! can be 

developed into the two-dimensional order shown in Fig. 4 below. 



 

 

Fig. 4. GE:GE, GE:PP and PP:PP pairings 

on both ! and ! √3 axes. 

 
Fig. 5. Three-dimensional arrangement of 

the four !"# and eight !!" together with 

their linkages that reveals the meta-order of 

the all-space-filling periodic honeycombs. 

 

 
 

 
Notes to Fig. 4: The four !"# form an inner square arrangement, while the eight !!" form 

an outer octagonal arrangement. Lines, circular and semi-circular arcs represent directed 

matings. !":!" matings are shown in heavier line width. The circular arcs at top attached to 

!", !", !" and !" represent self-reflexive matings, their ends depicting both “mater” and 

“matee”. To aid clarity, the two lines connecting !"  and !"  are shown at bottom as 

semicircular arcs. The two groups of !!" are clearly distinct, the self-reflexive group above, 

the non-self-reflexive below. Each !! has a unique opposite !!, e.g. !":!". 

GE:GE matings: As described earlier, each !" mates (and is mated with) its polyhedron of 

opposite orientation (sign), and the other polyhedron of the same orientation (sign), but on 

these ! and ! √3 axes does not mate with the other polyhedron of opposite orientation (sign). 

PP:PP matings: In the non-self-reflexive group of four below, each !! mates and is mated 

with two other !!", but not with the fourth. In the self-reflexive group of four above, each 

!! mates and is mated with one other !! of that group, and with itself. 

GE:PP matings: Each !! mates and is mated with two !"# that are the same polyhedra but 

of opposite orientations (i.e. positive and negative signs). Within each group of four !!", 

two !!" mate or are mated with one !", and are mated or mate with the other !" that is the 

same polyhedron, but of different orientation (sign). The other two !!" in that group of four 

 



 

mate or are mated with the !" that is the other polyhedron and of opposite orientation (sign), 

and are mated or mate with that same other polyhedron of the ‘opposite to the opposite’, i.e. 

the same orientation (sign). Each !" mates or is mated with one pair of !!" from one group 

of 4, and is mated or mates with the opposite pair on the octagon from the other group of four. 

 
Table 4. Matrices of PP:PP for top left: √1, top right: √2, and bottom left: √3 Axes. 

Bottom right: Axes that facilitate mating for the PPs, 

where √1,2,3 represents √1, √2, √3; and √1,2 represents √1, √2. 

                      1 !" !" !" !" !" !" !" !"  2 !" !" !" !" !" !" !" !"  

 !"          !"          

 !"          !"  
  

      

 !"          !"  
  

      

 !"          !"          

 !"     
  

   !!          

 !"     
  

   !"          

 !"          !"          

 !"          !"          

                      3 !" !" !" !" !" !" !" !"  !"#$ !" !" !" !" !" !" !" !"  

 !"          !" 1,2,3 1  2 3     

 !" 
 

  
 

 

  
 
 !" 1 1,2 2 3    3  

 !" 
 

   

 

    !"  2 1,2,3 1   3   

 !" 
 

 
  

 
 

   !" 2 3 1 1,2  3    

 !"          !" 3    1,2,3 1  2  

 !"    
 

   
 
 !"    3 1 1,2 2 3  

 !"          !"   3   2 1,2,3 1  

 !"  
 

   
 

   !"  3   2 3 1 1,2  

                     
Table 5. Matrices of √1, √2, √3 axes that facilitate mating for the two groups of PPs. 

 

              !"#$ !" !" !" !"  !"#$ !" !" !" !"  
 !" √1,√2 √3  √3  !" √1,√2,√3  √3   
 !" √3 √1,√2 √3   !"  √1,√2,√3  √3  
 !"  √3 √1,√2 √3  !" √3  √1,√2,√3   
 !" √3  √3 √1,√2  !"  √3  √1,√2,√3  
              



 

 

Table 6. Matrix of {2,3,4 | 2,3,4} honeycombs with overlapping squares of expansion sequences. 

 

6. Development of the Order of All-space-filling Periodic Honeycombs 
I develop Figure 4 into the three-dimensional arrangement of !"# and !!" of Fig. 5 

shown at right that reveals the coherent integral meta-order of the various periodic 

honeycombs. In this arrangement, secondary neutral elements are omitted for the sake of 

clarity. The structure consists of a vertically disposed double cube, combined with various 

links between the nodes. The upper stratum consists of the group of four self-reflexive !!". 

The middle stratum consists of the !"#. The lower stratum consists of the group of four non-

self-reflexive !!". Polar opposites of !!" across the dashed long diagonals of the double 

cube uniquely relate !!" from one group to the other, so each !! associates with its specific 

opposite, e.g. !" − !". (Note that axial linkages do not necessarily accord with the axial 

relationships of polyhedra within any particular honeycomb; for example, a √2 link in Fig. 5 

might represent an actual √1 or √3 axial relationship in the corresponding honeycomb). 
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Circular links through each of the four !"# of the upper stratum represent the four self-

reflexive {2,3,4}|{2,3,4} honeycombs: [!"|!"] , [!"|!"] , [!"|!"] , and [!"|!"] . For 

clarity, I’ve folded these links into the vertical, although they belong in the plane of the upper 

square. √2 diagonal links of the horizontal square of the upper stratum represent the other 

{2,3,4}|{2,3,4} honeycombs of their group: [!"|!"], [!"|!"], [!"|!"], and [!"|!"]. 
√1 edge links of the horizontal square of the lower stratum represent the eight non-self-

reflexive {2,3,4}|{2,3,4} honeycombs of the other group of four !!": [!"|!"], [!"|!"], 
[!"|!"], and [!"|!"]; and [!"|!"], [!"|!"], [!"|!"], and [!"|!"]. (The expansion/ 

contraction sequences of these 16 honeycombs of upper circular, upper √2, and lower √1 

links are clearly displayed in Fig. 1 of my Ref. [5], which is Part I of this series of papers; 

that figure also details the specific neutral elements for each array). 

The {2,3,3}|{2,3,4} honeycombs are represented by polar opposites of !!"  that are 

mediated by their respective !"#, so that each of these honeycombs is represented as an 

inclined diamond:   !
! !"

!" !!    ,   !
! !"

!" !!    ,   !
! !"
!" !! ,   and   !

! !"
!" !!    . 

(Each diamond and {2,3,3}|{2,3,4} honeycomb then has four permutations, depending upon 

which of the four constituent polytopes is located at which node of the reference lattices). 

The singular {2,3,3}|{2,3,3} honeycomb is represented by the dashed pair of √1 edge and 

dashed pair of √2 diagonal links of the horizontal square of the middle stratum at the center 

of the model. Thicker dashed lines represent √1 axial relationships; dashed √2 diagonals 

represent √3 axial relationships. (This honeycomb also comes in 4 permutations, according to 

which of the four constituent !"# is located at which node of the reference lattices). 

I thus advance a coherent model of the meta-order of the all-space-filling periodic 

honeycombs. This has the great advantage of imageability: this structural model can be 

readily memorized, then projected into the space of the imagination, and employed to deduce 

or recall the various honeycombs that emerge as specific cases of its integral coherence. 

However, in fairness, I feel the model and its inherent order, whilst offering pragmatic 

and pedagogic advantage, lacks a certain elegance that I anticipated that it should reveal. 

Firstly, the circular self-reflexive links detract from the purity of the model, and whilst I 

suspect a four-dimensional structure might be better employed, possibly through hypercubes, 

to date I have been unable to derive a more satisfactory form. Secondly, the status of the 

{2,3,3}|{2,3,3} honeycomb still troubles me - it should be core, but I’m as yet unclear as to 

how it meaningfully relates to the other honeycombs, beyond being an incidental 

recombination of elements of the base octet truss  !
! !"

!" !!  , which might instead be core. 



 

 

I therefore intend to refine the existing model in further research, paying particular 

attention to the alternation of primary nodes and lattices, and to present that order in the final 

Part 3 of this series. I anticipate a shift in emphasis from “what mates with what”, to “what 

alternates with what”. This will likely emphasize how the various honeycombs may be 

understood as different vibrational states of the same rare ethereal structure of space. 

  

7. Conclusion 
Inspired by my recognition of an adequate order to describe the regular and semi-regular 

polyhedra, I continue the research in this paper into a comprehensive order to properly 

account for the all-space-filling polyhedral honeycombs, by investigating how pairs of 

polyhedra combine. Having identified four Great Enablers and eight Primary Polytopes, I 

consider how !":!", !":!!, and !!:!! pairs combine with one another, proximally or 

distally, along their 1, 2, or 3 axes, and how these diverse matings relate to specific 

honeycombs. In this process, I regard certain polytopes as secondary neutral elements that lie 

between !"#, or between !"# and !!", or between !!" (dependent upon the symmetry 

case). Except for the core {2,3,3}|{2,3,3} honeycomb, which I regard as the most 

convoluted, energetic form, honeycombs are parts of expansion/contraction sequences, these 

being two-stage for the {2,3,3}|{2,3,4} honeycombs, and three-stage for the {2,3,4}|{2,3,4} 

honeycombs. I detail the various honeycombs and their expansion sequences in Ref. [5]. 

Here, I show that the matings are highly constrained. Matings always occur in pairs. In 

the possible honeycombs, on a particular axis, a given polytope mates with just one polytope, 

and separately, with just one other polytope. For the given polytope, these pairs of mateable 

polytopes vary by axis. These pairs also vary by symmetry group – for any one symmetry 

group and axis, a constituent polytope pairs with just two others, and that association pattern 

is unique to the symmetry group and axis. In the case of the !!:!!  matings of the 

{2,3,4|2,3,4} symmetries, in general one of these matings is with itself, the exceptions being 

3  axis matings. The characteristics of these 3  axis matings enable me to formally 

differentiate the !!" into two groups of four, which I show as two squares. !!:!! pairings 

of the first group behave in a similar manner to !":!" and !":!! pairings, with !!" 

pairing with themselves and with their opposites. Conversely, those of the second group do 

not. Instead, each !! pairs with its two neighbors, but not with itself, or with its opposite. 

For the !":!!  and !!:!!  pairings, the expansion/contraction sequences of my earlier 

paper [5] are evident in the 3 matrices; in particular for the !!:!! pairings, the sequences 

are evident (in this paper) as overlapping squares in Table 4 (bottom left) and in Table 6. 



 

I therefore move beyond the mere recognition of sets of !"# and !!", to an appreciation 

of the profound inner order that relates these individual elements, according to their potential 

to mate with one another, and that correlates these matings with the proper honeycombs that 

they form (together with the neutral elements). This research effort respects prior efforts, 

whilst seeking to surpass them. The challenge now to evince a more adequate formal 

representation of the profound harmony that is here merely glimpsed, and in a future paper to 

more adequately describe that new meta-order of the all-space-filling periodic honeycombs. 

*** 
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