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Abstract 
 

This extended version of a third part of a series of papers applies the metaorder of the all-space-filling 
periodic polyhedral honeycombs developed by the author to their potential configurations of form and 
counterform. The individual periodic polyhedral honeycomb can be differentiated into a subset of 
contiguous periodic polytopes, the form, while the remaining space comprises another subset of 
contiguous periodic polytopes, the counterform. Form and Counterform fill all space. While in certain 
cases, the contiguity of a subset is through just neutral vertex; axial, transverse, or diagonal edge; or 
diagonal prism, rather than through neutral axial polygon or polyhedron, the behavior is rigorous, and 
validates the metaorder of these honeycombs that I have previously advanced. As in the well known 
figure-background perception phenomenon in psychology, form and counterform are interchangeable, 
depending on which is being attended to. But each demonstrates parallel and consistent structure within 
each of the three symmetry classes. In each specific case, form and counterform are intertwined with 
each other, and divide space into two. Form and counterform are identical in four cases; and identical, 
but enantiomorphic, in another. The expansion sequences of honeycombs in Classes II and III that I 
have elsewhere identified apply, so within each sequence, its form follows an expansion sequence, 
whilst its counterform simultaneously follows a corresponding counter-sequence, and these are 
consistent for each sequence in the class. The investigation into form and counterform provides a 
platform to apply and validate the metaorder of these all-space-filling periodic polyhedral honeycombs, 
and suggests further development and potential applications of the geometries. 
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This paper substantially develops and expands my earlier paper “Form and Counterform in the All 
Space-filling Periodic Polyhedral Honeycombs”, in L. Li and C.-C. Hung (eds.), Proceedings of The 
Ninth International Conference on Information, Tokyo, December 7–9, 2018, 51–56 [1]. 
 
Glossary 
𝐺𝐸 : The 4 Great Enablers, of +/– orientation Tetrahedron 𝑇!,𝑇!, or truncateD tetrahedron, 𝐷!,𝐷!. 
𝑃𝑃 : The 8 Primary Polytopes: VerTex 𝑉𝑇, CuBe 𝐶𝐵, Truncated Octahedron 𝑇𝑂, Great Rhomic 

cuboctahedron 𝐺𝑅 , OctaHedron 𝑂𝐻 , CubOctahedron 𝐶𝑂 , Truncated Cube 𝑇𝐶 , and Small 
Rhombic octahedron 𝑆𝑅. 



 

𝑁𝐸 : The 10 Neutral Elements: the Diagonal Edge 𝐷𝐸  (i.e., √2), (2D) Neutral Vertex 𝑁𝑉 , 
(transverse) Square 𝑆𝑄 (elsewhere Neutral Square 𝑁𝑆), Rotated Square 𝑅𝑆, and OctaGon 𝑂𝐺, 
and their respective prisms, the Diagonal Prism 𝐷𝑃 (axial square), Axial Edge 𝐴𝐸, Square 
Prism 𝑆𝑃 (neutral cube), Rotated Prism 𝑅𝑃 (rotated cube), and Octagonal Prism 𝑂𝑃. 

𝑅𝐶𝐿 : Reference Cubic Lattice, 𝑅𝐶𝐿! and 𝑅𝐶𝐿!, each with nodes at the centers of the other’s cubes. 
𝑅𝑇𝐿 : Reference Tetrahedral Lattice, there being two for each 𝑅𝐶𝐿: 𝑅𝑇𝐿!! and 𝑅𝑇𝐿!

!, 𝑅𝑇𝐿!! and 𝑅𝑇𝐿!
!. 

𝑉3 : √3 axial Vertex “face” of 𝑉𝑇, 𝐶𝐵, or 𝑇.   𝑉4 : √1 axial Vertex “face” of 𝑉𝑇.   (+)ve:   positive. 
𝑇𝑅 : √3 axial Triangular face, +ve (upper ∆) 𝑇𝑅! of 𝑂𝐻, 𝑆𝑅, or 𝐷; –ve (up. ∇) 𝑇𝑅! of 𝑇𝐶, 𝐶𝑂, or 𝑇.  
𝐻𝐺 : √3 axial Hexagonal face, of 𝑇𝑂, 𝐺𝑅, or 𝐷.   𝑇𝐸 :   √2 axial Transverse Edge.   (–)ve:   negative. 
 
1.   Introduction 
In this paper, I apply the metaorder of the all-space-filling periodic polyhedral honeycombs 
that I have elsewhere advanced [3–6] to the perspective of form and counterform, which 
together fill all space. Inspired by Keith Critchlow’s Order in Space [7], my analysis of the 
polyhedral honeycombs differentiates them into three classes on the basis of the symmetry 
that the centers of the polytopes of their lattices display, viz. Classes I {2,3,3|2,3,3} (1 kind); 
II: {2,3,3|2,3,4} (4 distinct kinds); and III: {2,3,4|2,3,4} (10 distinct kinds). The honeycombs 
are comprised of various combinations of three distinct kinds of polytopes: the two “Great 
Enablers” 𝐺𝐸 = 𝑇 and 𝐷 in (+/–)-ve orientation (𝑇!, 𝑇–, 𝐷!, 𝐷–); eight Primary Polytopes 
𝑃𝑃s: (𝑉𝑇, 𝐶𝐵, 𝑇𝑂, 𝐺𝑅, 𝑂𝐻, 𝐶𝑂, 𝑇𝐶, 𝑆𝑅); and the 10 Neutral Elements 𝑁𝐸s that mediate 
them along the √1 XYZ axes. 𝐺𝐸s and 𝑃𝑃s are situated at nodes of reference cubic lattices 
𝑅𝐶𝐿! and 𝑅𝐶𝐿!; the nodes 𝑅𝐶! of one lattice are located at the centers of the reference cubes 
𝑅𝐶! of the other lattice. Either 𝑅𝐶𝐿 can be differentiated into component tetragonal lattices 
𝑅𝑇𝐿! and 𝑅𝑇𝐿!, so 𝑅𝑇𝐿!: 𝑅𝑇𝐿!! of nodes 𝑅𝑇!!, and 𝑅𝑇𝐿!

! of 𝑅𝑇!
!; and 𝑅𝑇𝐿!: 𝑅𝑇𝐿!! of nodes 

𝑅𝑇!!, and 𝑅𝑇𝐿!
! of 𝑅𝑇!

!. The 3 classes are characterized by different types of alternation, 
which are determined by which 𝐺𝐸s or 𝑃𝑃s are situated at which nodes of the 𝑅𝐶𝐿s or 𝑅𝑇𝐿s. 

This analysis differs from previous analyses [7–9] in my differentiation of honeycombs 
into 3 symmetry classes, elements into 𝐺𝐸𝑠, 𝑃𝑃𝑠, and 𝑁𝐸𝑠, and 𝑃𝑃s into self-reflective and 
not; inclusion of 𝑉𝑇 as a 𝑃𝑃; inclusion of the regular 𝑂𝑃  as a neutral polyhedron, and 
extension of neutral elements to include 0D, 1D, and 2D polytopes, as well as 3D polyhedra; 
recognition of sequences of expansion of the honeycombs in Classes II and III, and clusters 
thereof in Class III; and the recognition of 𝑉𝑇! | 𝐶𝐵! !"!

!"!  and 𝑉𝑇! | 𝑉𝑇! !"!
!"! as honeycombs. 

For convenience of exposition, I consider the classes in reverse order, and commence with 
Class III, which is characterized by a simple alternation of 𝑃𝑃! and 𝑃𝑃! on 𝑅𝐶𝐿! and 𝑅𝐶𝐿!, 
though note that both 𝑅𝐶𝐿s could be distinguished into their two respective component 𝑅𝑇𝐿s, 
𝑅𝑇𝐿!  and 𝑅𝑇𝐿! , to constitute an alternation of alternations. Secondly, the Class III 
honeycombs can be further differentiated into whether they are self-reflective (𝑃𝑃! = 𝑃𝑃!) 
(i.e. the same polytope), or not (𝑃𝑃!  ≠ 𝑃𝑃!). Fundamental to this differentiation is the 
apprehension that the various 𝑃𝑃𝑠 are not equivalent, though they do emerge as different 
characterizations of the same more profound integral order. In similar fashion, the 
differentiation of component polytopes into 𝐺𝐸s, 𝑃𝑃s, and 𝑁𝐸s recognizes that not all 
components are equivalent – they have unique qualities both in terms of sub-class and as 
individuals, while still revealing a coherent order underlying their patterns of association.  



 

Class II is characterized by an alternation of alternations, as in 𝑅𝐶𝐿! consisting of an 
alternation of 𝑃𝑃! and 𝑃𝑃!, while 𝑅𝐶𝐿! consists of an alternation of 𝐺𝐸! and 𝐺𝐸–, where for 
the one honeycomb, 𝐺𝐸  is either 𝑇!/–  or 𝐷!/– , but cannot be both. The patterns of 
association of 𝑃𝑃! and 𝑃𝑃! reflect in different fashion their differentiation in Class III. 

Finally, Class I – which I regard as the most subtle of the honeycombs, and the most 
difficult to properly appreciate – is characterized by a complex four-way alternation of both 
plus and minus forms of both GEs, so that 𝑅𝐶𝐿!  = [𝑅𝑇𝐿!!  = 𝑇!  and 𝑅𝑇𝐿!

!  = 𝐷–], while 
𝑅𝐶𝐿! = [𝑅𝑇𝐿!

! = 𝐷! and 𝑅𝑇𝐿!
! = 𝑇–], where superscripts +/– denote alternative orientations 

(of 𝑇 or 𝐷 in its reference circum-cube). Neutral Elements (NEs) of {2,2,4} symmetry are 
located on the respective √1 XYZ axes, so demonstrate one of 3 primary XYZ orientations.  
 
2.   The three classes of honeycombs and their constituent sets of polytopes 
 
2.1.  Class III 
The {2,3,4|2,3,4} Class III honeycombs are constituted of either 1 or 2 𝑃𝑃s and their 
respective 𝑁𝐸s; in the case of 1 𝑃𝑃, this simply means that although there are two 𝑃𝑃𝑠, they 
are the same 𝑃𝑃, though they can be considered as being of different color according to their 
location (they play different roles). So the Class III honeycombs comprise four different two-
step expansion/contraction sequences of honeycomb from contracted form through 
intermediary form to expanded form (Fig. 1 A). These consist of a self-reflective primary 
sequence (Fig. 1 D), a non-self-reflective secondary sequence (Fig. 1 C) that appears as two 
enantiomorphs of one another, and a self-reflective tertiary sequence (Fig. 1 B). The steps in 
each sequence are characterized by in the first step, one set of 𝑃𝑃s separating by unit distance, 
while the other set morphs from one 𝑃𝑃 to another; and then in the second step, the first set of 
𝑃𝑃s morphing from one 𝑃𝑃 to another, while the other (new) set of PPs separates by unit 
distance. There are only 4 kinds of morphs, and this fundamental behavior of simultaneous 
separation and morphing extends into Class II, and even to the order relating the polytopes 
within one symmetry class (which I am in the process of thus revising). (This lattice 
expansion sequence is well described in the earlier papers [1–6]). So in the various Class III 
honeycombs, pairs of proximate 𝑃𝑃s can either be contiguous (adjoining; in the contracted 
state in the contracted or intermediary forms); or non-contiguous, separated by unit distance 
(adjacent; in the expanded state in the intermediary or expanded forms of the honeycombs). 
Meanwhile, in the contracted state of 𝑃𝑃s, 𝑁𝐸s can only have zero extent along their primary 
X, Y, or Z (XYZ) axis, so are considered to be either neutral vertex (𝑁𝑉), transverse (√1) (𝑇𝐸) 
or diagonal (√2) (𝐷𝐸) edge, or transverse polygon of neutral square (𝑆𝑄), rotated square (𝑅𝑆), 
or octagon (𝑂𝐺). In the expanded state of 𝑃𝑃s, these neutral polytopes have been projected 
along their primary axis (by unit length), to form axial edge (𝐴𝐸), transverse (√1) square 𝑆𝑄 
or diagonal (√2) prism (𝐷𝑃), or prismatic (neutral) square prism (neutral cube) (𝑆𝑃), rotated 
square prism (rotated cube) (𝑅𝑃), or (regular) octagonal prism (𝑂𝑃). Note again that each of 
these neutral polytopes has a primary XYZ axis, and two minor XYZ axes, so they come in 
three primary orientations. For practical applications, they can each be further differentiated if 
desired into +ve or –ve forms, according to the direction of their normal along the XYZ axis.  



 

 

 



 

 

 



 

Figure 1: A: Class III {2,3,4|2,3,4} shows four sequence clusters of Primary (bottom), Secondary A 
(left) and its enantiomorph Secondary B (right), and Tertiary (top). Each sequence cluster separates 
from lower contracted state via two pathways to two middle intermediary states, which combine into 
upper expanded state. At each step, 𝑃𝑃! and 𝑃𝑃! take it in turn to either separate by unit edge length, or 
morph from one contracted 𝑃𝑃 to its expanded pair 𝑃𝑃: 𝑉𝑇 to 𝐶𝐵, 𝑂𝐻 to 𝑆𝑅, 𝐶𝑂 to 𝑇𝐶, or 𝑇𝑂 to 𝐺𝑅. 
In those four fundamental morphs, the √3 faces of 𝑃𝑃! or 𝑃𝑃! separate by unit edge length, the √1 
faces expand by the two fundamental expansions of 𝑉𝑇 to 𝑆𝑄, or 𝑅𝑆 to 𝑂𝐺; and the √2 faces expand 
from 𝑉𝑇 to 𝑇𝐸 or 𝐷𝐸 to (√2-axial) 𝑆𝑄. 

B: Class III Tertiary Sequence Cluster. In the first step, at left, from contracted form [𝑇𝑂!|𝑇𝑂!], 𝑇𝑂!s 
separate and 𝑇𝑂!s morph to 𝐺𝑅!s, to yield intermediary [𝑇𝑂!|𝐺𝑅!]; while in the second step, 𝑇𝑂!s 
morph to 𝐺𝑅!s and 𝐺𝑅!s separate, to yield extended [𝐺𝑅!|𝐺𝑅!]. Right side is the enantiomorphic 
equivalent, as in the first step, 𝑇𝑂!s morph to 𝐺𝑅!s and 𝑇𝑂!s separate to yield intermediary [𝐺𝑅!|𝑇𝑂!], 
while in the second step, 𝐺𝑅!s separate and 𝑇𝑂!s morph to 𝐺𝑅!s, to yield extended [𝐺𝑅!|𝐺𝑅!]. 

C: Class III Secondary Sequence Cluster A. In the first step, at left, from contracted form [𝑂𝐻!|𝐶𝑂!], 
𝑂𝐻!s separate and 𝐶𝑂!s morph to 𝑇𝐶!s, to yield intermediary [𝑂𝐻!|𝑇𝐶!]; while in the second step, 
𝑂𝐻!s morph to 𝑆𝑅!s and 𝑇𝐶!s separate, to yield extended [𝑆𝑅!|𝑇𝐶!]. Right side is the enantiomorphic 
equivalent, as in the first step, 𝑂𝐻!s morph to 𝑆𝑅!s and 𝐶𝑂!s separate to yield intermediary [𝑆𝑅!|𝐶𝑂!], 
while in the second step, 𝑆𝑅!s separate and 𝐶𝑂!s morph to 𝑇𝐶!s, to yield extended [𝑆𝑅! |𝑇𝐶!]. 
Secondary Sequence Cluster B (not shown) is simply the enantiomorph of this sequence cluster. 

D: Class III Primary Sequence Cluster. In the first step, at left, from contracted form [𝑉𝑇!|𝑉𝑇!], 𝑉𝑇!s 
separate and 𝑉𝑇!s morph to 𝐶𝐵!s, to yield intermediary [𝑉𝑇!|𝐶𝐵!]; while in the second step, 𝑉𝑇!s 
morph to 𝐶𝐵!s and 𝐶𝐵!s separate, to yield extended [𝐶𝐵!|𝐶𝐵!]. Right side is the enantiomorphic 
equivalent, as in the first step, 𝑉𝑇!s morph to 𝐶𝐵!s and 𝑉𝑇!s separate to yield intermediary [𝐶𝐵!|𝑉𝑇!], 
while in the second step, 𝐶𝐵!s separate and 𝑉𝑇!s morph to 𝐶𝐵!s, to yield extended [𝐶𝐵!|𝐶𝐵!]. 

2.2.  Class II 
The {2,3,3|2,3,4} Class II honeycombs are constituted of one or other of the 𝐺𝐸s in both +ve 
and –ve orientations, and 2 𝑃𝑃s that share the same √1 faces, and comprise four different one-
step expansion/contraction sequences of honeycomb from contracted form to expanded form, 
and their respective 𝑁𝐸 s: 𝑁𝐸!"  = 𝑁𝐸!  or 𝑁𝐸! , and 𝑁𝐸!! . Figure 2 shows that these 
sequences consist of two parallel one-step sequences, one for 𝐺𝐸=𝑇!/–, and one for 𝐺𝐸=𝐷!/–. 
Analogous to Class III, the step in either sequence is characterized by the set of 𝐺𝐸s 
separating by unit distance, while the two 𝑃𝑃s of the other set morph to the two other 𝑃𝑃s. 
The four morphs are the same as for Class III. In a sequence, one reflective 𝑃𝑃 and one non-
reflective 𝑃𝑃 of the contracted honeycomb morph to another reflective 𝑃𝑃 and another non-
reflective 𝑃𝑃, respectively, of the expanded honeycomb. 𝐺𝐸s in the contracted honeycomb 
are contiguous, mediated by the 𝑁𝐸 of 𝐷𝐸; while the two 𝑃𝑃s are contiguous, mediated by 
the 𝑁𝐸 of 𝑁𝑉 or 𝑅𝑆. In the expansion, the 𝐺𝐸s separate by unit distance along the XYZ axes, 
the neutral 𝐷𝐸s projecting along their primary XYZ axis to become 𝐷𝑃s; while the two 𝑃𝑃s 
morph to two other 𝑃𝑃s, as their 𝑁𝐸s expand from 𝑁𝑉 to 𝑁𝑆 or 𝑅𝑆 to 𝑂𝐺. Figure 3 shows 
the 𝑃𝑃s 𝑂𝐻 and 𝑉𝑇 morphing to 𝑆𝑅 and 𝐶𝐵 (Fig. 3 A), and 𝑇𝑂 and 𝐶𝑂 morphing to 𝐺𝑅 and 
𝑇𝐶 (Fig. 3 B) (though the morph 𝑉𝑇 to 𝐶𝐵 might better be described as an expansion). 



 

 

 
Figure 2: Class II {2,3,3|2,3,4} shows two parallel sequences of Primary (left), and Secondary A (right). 
In the Primary sequence at left, from the contracted 𝑇

! 𝑉𝑇
𝑂𝐻 𝑇–

 (bottom), 𝑇! and 𝑇– separate, while 𝑂𝐻 



 

and 𝑉𝑇 morph into 𝑆𝑅 and 𝐶𝐵, respectively, to yield the expanded 𝑇
! 𝐶𝐵
𝑆𝑅 𝑇–

 (top). This is paralleled in 
the Secondary sequence at right, where from the contracted 𝐷

! 𝐶𝑂
𝑇𝑂 𝐷–

 (bottom), 𝐷! and 𝐷– separate, 
while 𝑇𝑂  and 𝐶𝑂  morph into 𝐺𝑅  and 𝑇𝐶 , respectively, to yield the expanded 𝐷! 𝑇𝐶

𝐺𝑅 𝐷–
 (top). 

A. Cluster about a core 𝑇!, and B. cluster about a core 𝑇–. 

 
Figure 3: Class II Morphs: A. (above, left-to-right) 𝑇𝑂 + 𝐶𝑂 morph to 𝐺𝑅 + 𝑇𝐶. 𝑁𝐸s mediating 𝑃𝑃s 
expand 𝑅𝑆 to 𝑂𝐺 (not shown). B. (below, right-to-left) 𝑂𝐻 + 𝑉𝑇 morph to 𝑆𝑅 + 𝐶𝐵. 𝑁𝐸s mediating 
𝑃𝑃s expand 𝑁𝑉 to 𝑆𝑄 (not shown). 

 
Figure 4: Class I {2,3,3|2,3,3}. In this singular honeycomb, all four 𝐺𝐸s of 𝑇!, 𝑇–, 𝐷!, and 𝐷– 
alternate with one another, and 𝑃𝑃s do not appear. This is the most profound of the all-space-filling 
periodic honeycombs. A. (upper) Various views, and the four 𝐺𝐸s. B. (lower) Various views clustering 
about a core 𝑇!/– or 𝐷!/–, with 50 % transparency. C. (next page) The honeycomb consists of two 
types of axial strands along XYZ axes, alternating either edge-jointed 𝑇! and 𝐷– (red/green), or edge-
jointed 𝑇– and 𝐷! (orange/blue). Views are shown of strands intersecting at a central 𝑇!/– or 𝐷!/–. 



 

 
2.3.  Class I 
Figures 4 A and B (previous page) show that the {2,3,3|2,3,3} Class I honeycomb is 
constituted of both 𝐺𝐸s in both +ve and –ve orientations, and their respective 𝑁𝐸s = 𝐷𝑃. This 
class thus shows no expansion/contraction sequences of honeycombs from contracted form to 
expanded form. Figure 4 C (above) shows that the 𝐺𝐸𝑠 𝐷! and 𝑇! alternate along the axes of 
𝑅𝐶𝐿!, and are contiguous, though mediated by their 𝑁𝐸 of 𝐷𝐸 transverse to their primary 
XYZ axis, of alternating orientation. Meanwhile, 𝐷! and 𝑇! alternate along 𝑅𝐶𝐿!, and are 
also contiguous, though mediated by their 𝑁𝐸 of 𝐷𝐸 transverse to their primary XYZ axis, of 
alternating orientation. 
 
2.4.  Subsets of polytopes of all three classes 
This analysis means that the constituent polytopes of any of these honeycombs may be 
differentiated into subsets of polytopes, as follows: Class III: one (self-reflective) or two 𝑃𝑃s, 
and their respective 𝑁𝐸s; Class II: one or other 𝐺𝐸 in both orientations 𝐺𝐸! and 𝐺𝐸– and 2 
𝑃𝑃s, and their respective 𝑁𝐸s (which are at maximum, 2D); and Class I: characterized by 2 
(both) 𝐺𝐸s in both +ve and –ve orientations, i.e. 𝑅𝑇!! = 𝐷!!, 𝑅𝑇!

! = 𝑇!
–, 𝑅𝑇!! = 𝑇!!, 𝑅𝑇!

! = 𝐷!
–; 

and their respective 𝑁𝐸!"
!/– s. The 𝑁𝐸  can be divided into 𝑁𝐸!  and 𝑁𝐸! , which can be 

differentiated as: 𝑁𝐸!!, 𝑁𝐸!!, 𝑁𝐸!!, and 𝑁𝐸!!, 𝑁𝐸!!, 𝑁𝐸!!; and as +ve or –ve, according to 
their axial direction. 

Class II is characterized by 𝑅𝑇!! = 𝑇!! or 𝐷!!, 𝑅𝑇!
! = 𝑇!

– or 𝐷!
–, 𝑅𝑇!! = 𝑃𝑃!!, 𝑅𝑇!

! = 𝑃𝑃!
–, 

where for a specific honeycomb, “or” is exclusive; and 𝑃𝑃! and 𝑃𝑃– are NOT the same 
polyhedron, but are rather √1 complementary – the two 𝑃𝑃s that exhibit the same √1 face. 



 

Class III can be rectified to a similar 4-fold alternation of tetrahedral lattices by 
considering the colorings of both 𝑃𝑃s, where the “coloring” differentiates +/– pairs of either 
𝑃𝑃 according to their α/β location, so that Class III is characterized by 𝑅𝑇!! = 𝑃𝑃!!, 𝑅𝑇!

! = 
𝑃𝑃!

–, 𝑅𝑇!! = 𝑃𝑃!!, 𝑅𝑇!
! = 𝑃𝑃!

–. In the four self-reflective Class III honeycombs, 𝑃𝑃! = 𝑃𝑃! 
(i.e. all 4 polyhedra are the same polyhedron, but in different locations). The remaining six 
non-self-reflective honeycombs, 𝑃𝑃! ≠ 𝑃𝑃! can be further differentiated into the two arrays of 
two different self-reflective 𝑃𝑃s (where the two 𝑃𝑃s are √3 identical, [𝐺𝑅|𝑇𝑂] and [𝐶𝐵|𝑉𝑇], 
sharing the same 𝐻𝐺 or 𝑉3 hexagon or vertex √3 face, respectively), and the four arrays of 
different non-self-reflective 𝑃𝑃s (where the two polyhedra are instead √3 complementary, 
[𝑂𝐻|𝐶𝑂], [𝐶𝑂|𝑆𝑅], [𝑆𝑅|𝑇𝐶], and [𝑇𝐶|𝑂𝐻], sharing the complementary, hence mating, 𝑇𝑅! ∆ 
or 𝑇𝑅– ∇ triangular 180° rotated √3 face).  

So Class I may be considered as the four-fold alternation of 4 interpenetrating tetrahedral 
lattices of both 𝐺𝐸s of both orientations; Class II as the alternation of alternation of two pairs 
of interpenetrating tetrahedral lattices, one pair being GEs and the other pair being √1 
complementary 𝑃𝑃 s 𝑉𝑇 :𝑂𝐻 , 𝐶𝑂 :𝑇𝑂 ; 𝐶𝐵 :𝑆𝑅 ; 𝑇𝐶 :𝐺𝑅 ; and Class III the alternation of 
alternation of two pairs of interpenetrating tetrahedral lattices, where either pair consists of 
the same 𝑃𝑃; but the two 𝑃𝑃s of 𝑅𝐶𝐿! and 𝑅𝐶𝐿! are √3 mating 𝑃𝑃s, which in the contacted 
and expanded honeycombs of the primary and tertiary sequences are the same 𝑃𝑃, but in the 
intermediary forms of those two sequences and in the entire secondary sequence differ. 
 
3.   Form and Counterform Arrays 
Having deposed the polyhedra of the periodic honeycombs into classes and into the 
constituent sets and locations, and identified neutral polytopes that can be considered to 
separate the 𝐺𝐸s and 𝑃𝑃s, the arrays of combinations of these constituent sets can be 
addressed. Of course any combination of the constituent sets of polyhedra and neutral 
polytopes of a honeycomb, or more generally its class, can be considered, and for Classes II 
and III, in regard to its sequence – and abstracted across sequences. But the present enquiry is 
concerned with form and counterform. In both classes, form and counterform are 
characterized by contiguity, even though that contiguity might only be through mediating 𝑉𝑇, 
𝑇𝐸, 𝐷𝐸, 𝐴𝐸, or 𝐷𝑃; and together, form and counterform fill all space, so that they consist of 
interpenetrating arrays that share a common (two-sided) surface. Notwithstanding this 
approach, practical applications might well consider configurations where one or other are not 
contiguous; a contiguous form might serve as the reticulated provision of services and service 
spaces, while the counterform might be discrete (non-contiguous) usable, even habitable 
spaces – or at the organic level, artificial bone tissue scaffolding and discrete pores. Or the 
use of three or more interpenetrating arrays might be considered. But in this paper, only the 
all-space-filling combinations of just two arrays are addressed. These reveal common 
structure over the three Classes, and are identified according to axes of contiguity, and class. 
 
3.1.  √1 XYZ Axes of Contiguity 
3.1.1. √1 Axes of Contiguity for Class III. 
The inspiration for the exploration of form and counterform came from the cubic array 
formed by core cubes in face-to-face contact with intermediary cubes, so that each core cube 



 

is in face-to-face contact with six intermediary cubes, while each intermediary cube is in face-
to-face contact with two core cubes, one at each end. This might be regarded as an archetypal 
form; the leftover space, the “exterior”, proves to be precisely the same array (though 
displaced). So the common surface of squares separates two arrays that here are identical. 
Space is divided into two interpenetrating compartments, the exterior of one being the interior 
of the other. One is form, the other counterform. The metaorder of honeycombs I advance 
subsumes this as a division of the 𝐶𝐵! | 𝐶𝐵! !"!

!"! expanded array of the primary sequence in 
Class III, with 𝐶𝐵! and its neutral 𝑆𝑃! as form, and 𝐶𝐵! and its neutral 𝑆𝑃! as counterform.  

In general, form and counterform (CNTR) for the Class III √1 axes of contiguity can be: 
FORM | CNTR: <𝑃𝑃! : 𝑁𝐸! : 𝑃𝑃!> | <𝑃𝑃! : 𝑁𝐸! : 𝑃𝑃!>. Hence, Table 1: 
 

Table 1. Class III √1 Honeycombs and Contiguous Form and Counterform Arrays. 

Honeycomb FORM array CNTR array Sequence EXP 
𝐺𝑅! | 𝐺𝑅! !"!

!"!  <𝐺𝑅! : 𝑂𝑃! : 𝐺𝑅!> <𝐺𝑅! : 𝑂𝑃! : 𝐺𝑅!> Tertiary 2 
𝑇𝑂! | 𝐺𝑅! !"!

!"!  <𝑇𝑂! : 𝑅𝑃! : 𝑇𝑂!> <𝐺𝑅! : 𝑂𝐺! : 𝐺𝑅!>  1 

𝑇𝑂! | 𝑇𝑂! !"!
!"!  <𝑇𝑂! : 𝑅𝑆! : 𝑇𝑂!> <𝑇𝑂! : 𝑅𝑆! : 𝑇𝑂!>  0 

𝑆𝑅! | 𝑇𝐶! !"!
!"!  <𝑆𝑅! : 𝑂𝑃! : 𝑆𝑅!> <𝑇𝐶! : 𝑂𝑃! : 𝑇𝐶!> Secondary 2 

𝑂𝐻! | 𝑇𝐶! !"!
!"!  <𝑂𝐻! : 𝐴𝐸! : 𝑂𝐻!> <𝑇𝐶! : 𝑂𝐺! : 𝑇𝐶!>  1 

𝑆𝑅! | 𝐶𝑂! !"!
!"!  <𝑆𝑅! : 𝑆𝑄! : 𝑆𝑅!> <𝐶𝑂! : 𝑅𝑃! : 𝐶𝑂!>  1 

𝑂𝐻! | 𝐶𝑂! !"!
!"!  <𝑂𝐻! : 𝑉𝑇! : 𝑂𝐻!> <𝐶𝑂! : 𝑅𝑆! : 𝐶𝑂!>  0 

𝐶𝐵! | 𝐶𝐵! !"!
!"!  <𝐶𝐵! : 𝑆𝑃! : 𝐶𝐵!> <𝐶𝐵! : 𝑆𝑃! : 𝐶𝐵!> Primary 2 

𝑉𝑇! | 𝐶𝐵! !"!
!"!  <𝑉𝑇! : 𝐴𝐸! : 𝑉𝑇!> <𝐶𝐵! : 𝑆𝑄! : 𝐶𝐵!>  1 

𝑉𝑇! | 𝑉𝑇! !"!
!"!  <𝑉𝑇! : 𝑁𝑉! : 𝑉𝑇!> <𝑉𝑇! : 𝑁𝑉! : 𝑉𝑇!>  0 

Notes: Exp: Degree of Expansion: 2: Expanded; 1: Intermediary; 0: Contracted. 
 
Therefore, within Class III, for either 𝑅𝐶𝐿, each 𝑃𝑃 appears in two different cubic arrays, in 
either contracted adjoining) or expanded (adjacent) form, and each of these arrays (together 
with its 𝑁𝐸s) can conveniently be considered as form or counterform, as in Figs. 5–8, where 
male and female can refer to form and counterform (or vice versa). Note the alternative 
separation and morphing of pairs of 𝑃𝑃! and 𝑃𝑃! at each step of the expansion sequences, so 
that in the first step 𝑃𝑃! separates while 𝑃𝑃! morphs, then in the second step the opposite of 
𝑃𝑃! morphing while 𝑃𝑃! separates; or the converse of in the first step 𝑃𝑃! morphs while 𝑃𝑃! 
separates, then in the second step the opposite of 𝑃𝑃! separating while 𝑃𝑃! morphs. 

This do-si-doing motif appears fundamental to the honeycomb sequences, and can also be 
recognized in the relationship of the faces of the individual polyhedra in a symmetry class, 
e.g. of the Class II {2,3,4} polyhedra that are also the honeycomb 𝑃𝑃s, and which I intend to 
address in a later paper that will revise my earlier New Order in Space [10]. 



 

 

 
Figure 5: Class III Tertiary sequence cluster of Female & Male form/counterform for √1 axes. 



 

 

 
Figure 6: Class III Secondary A sequence cluster of Female & Male form/counterform for √1 
axes. Secondary B sequence cluster (not shown) is the enantiomorph of Secondary A cluster. 



 

 

 
Figure 7: Class III Primary sequence cluster of Female & Male form/counterform for √1 axes. 
[𝐶𝐵!|𝐶𝐵!] alternates 𝐶𝐵 + 𝑠𝑝 with 𝐶𝐵 + 𝑠𝑝; [𝐶𝐵!|𝑉𝑇!] alternates 𝐶𝐵 + 𝑠𝑞 with 𝑉𝑇 + 𝑛𝑣. 



 

 
Figure 8. A. (Top two rows of polyhedral arrays). Pairs of Class III cubic arrays of 𝑃𝑃𝑠 in expanded 
form for √1 axes. Top line of label is given form; bottom line is virtual counterform (also shown either 
here or in Fig. 8 B as form, as some honeycombs combine contracted and expanded cubic arrays of 
𝑃𝑃s; both forms and counterforms also shown in Figs. 5–7). Each 𝑃𝑃 array occurs once as given form, 
and once as virtual counterform. Seven of the eight 𝑃𝑃𝑠 of one reference cube are shown (in blue); 
given neutral elements from bottom to top are 2 each of 𝐴𝐸, 𝑅𝑃, 𝑆𝑃, or 𝑂𝑃 (in magenta). Each 
contracted (Fig. 8 B) or expanded (Fig. 8 A) array could be considered as form, or counterform. Note 
rigorous correspondence between each Fig. 8 A array (above) as expanded equivalent of corresponding 
contracted Fig. 8 B array (below). For color, refer SI at http://www.rmeurant.com/its/si-4.html . 

B: (Bottom two rows of polyhedral arrays). Pairs of Class III cubic arrays of 𝑃𝑃s in contracted form 
for √1 axes. Top line of label is given form as 𝑃𝑃! + 𝑁𝐸!; bottom line is virtual counterform as 𝑃𝑃! + 
𝑁𝐸! (also shown here or in Fig. 8 A as form; both forms and counterforms also shown in Figs. 5–7). 
Each 𝑃𝑃 array occurs once as given form, and once as virtual counterform. Seven of the 8 𝑃𝑃s of one 
reference cube are shown; given neutral elements are 2 each of (here uncolored) 𝑁𝑉, 𝑅𝑆, 𝑆𝑄, or 𝑂𝐺. 



 

 
Figure 9. (a) Class II cubic arrays of 𝑃𝑃𝑠 and 𝐺𝐸𝑠 in contracted (lower) and expanded (upper) form. 
Top and bottom lines are given form and virtual counterform for √1 axes, respectively. For clarity, only 
7 of the 8 𝑃𝑃𝑠 of one reference cube are shown: only 3 of 4 𝑃𝑃! in (–ve) tetrahedral array (blue) and 4 
𝑃𝑃! in (+ve) tetrahedral array (green). All 𝐺𝐸𝑠 are shown in cuboctahedral (+ve, red) and octahedral 
(–ve, orange) array about a core 𝐺𝐸! (red), with neutral 2-D 𝐷𝑃𝑠 in yellow. All configurations repeat 
indefinitely, and each could be considered as form, or counterform. 

3.1.2. √1 Axes of Contiguity for Class II. 
Figure 9 shows that form and counterform for the √1 Axes of Contiguity for Class II can be: 

FORM | CNTR: <𝐺𝐸!! : 𝑁𝐸!"  : 𝐺𝐸!
–> | <𝑃𝑃!! : 𝑁𝐸!! : 𝑃𝑃!

–> 
where, 𝑃𝑃!! and 𝑃𝑃!

– are complementary 𝑃𝑃s pairs sharing the same √1 face. Hence, Table 2: 



 

 
Table 2. Class II √1 Honeycombs and Contiguous Form and Counterform Arrays. 

Honeycomb FORM array CNTR array FORM array CNTR array Honeycomb 
𝑇! 𝐶𝐵
𝑆𝑅 𝑇–

 <𝑇!! : 𝐷𝐸 : 𝑇!
–> <𝐶𝐵!! : 𝑆𝑄! : 𝑆𝑅!

–> <𝐷!! : 𝐷𝐸 : 𝐷!
–> <𝑇𝐶!! : 𝑅𝑆! : 𝐺𝑅!

–> 𝐷! 𝑇𝐶
𝐺𝑅 𝐷–

 

𝑇! 𝑉𝑇
𝑂𝐻 𝑇–

 <𝑇!! : 𝐷𝐸 : 𝑇!
–> <𝑉𝑇!! : 𝑁𝑉! : 𝑂𝐻!

–> <𝐷!! : 𝐷𝐸 : 𝐷!
–> <𝐶𝑂!! : 𝑅𝑆! : 𝑇𝑂!

–> 𝐷! 𝐶𝑂
𝑇𝑂 𝐷–

 

 
3.1.3. √1 Axes of Contiguity for Class I. 
In general, the form and counterform for the √1 Axes of Contiguity for Class I, as shown in 
Fig. 11 (right), can be: 

FORM | CNTR: <𝐺𝐸!! : 𝑁𝐸! : 𝐺𝐸!
–> | <𝐺𝐸!! : 𝑁𝐸! : 𝐺𝐸!

–> 
i.e., FORM | CNTR: <𝐷!! : 𝐷𝐸! : 𝑇!

–> | <𝑇!! : 𝐷𝐸! : 𝐷!
–> 

where, 𝐷!! and 𝑇!
– alternate to form chains of 𝐺𝐸s along the √1 XYZ axes of 𝑅𝐶𝐿!, 

while, 𝑇!! and 𝐷!
– alternate to form chains of 𝐺𝐸s along the √1 XYZ axes of 𝑅𝐶𝐿!. 

These chains are shown earlier in Fig. 4 C. 
 
3.2.  √2 XYZ Axes of Contiguity 
I do not here consider the √2 XYZ Axes of Contiguity form and counterform arrays. 
 
3.3.  √3 XYZ Axes of Contiguity 
Note that these are dealt with in different order. 
3.3.1. √3 Axes of Contiguity for Class I. 
In the Class I honeycomb, 𝐷! on its triangular faces only mates with 𝑇! (the reduced size of 
the parent 𝑇 it is truncated from), while 𝐷– on its triangular faces only mates with 𝑇–, to form 
interpenetrating arrays of <𝐷!! –  𝑇!!>   and <𝐷!

– – 𝑇!
–>. Therefore, as shown in Fig. 11 (left): 

 FORM | CNTR: <𝐷!! : 𝑇𝑅!" : 𝑇!!> | <𝐷!
– : 𝑇𝑅!" : 𝑇!

–> 
This is an interesting pair of arrays, as either might be considered to consist of the array of 3-
frequency 𝑇!/𝑇– formed by 𝐷!/𝐷– and 𝑇!/𝑇–, which 3f 𝑇!/𝑇– overlap at common 𝑇!/𝑇–. 

Alternatively, 𝐷! on its hexagonal faces only mates with 𝐷–, while 𝑇!! on its vertex faces 
(its vertices) only mates with 𝑇!

–  to form interpenetrating arrays of 𝐷!/– , and of 𝑇!/– . 
Therefore, as shown in Fig. 11 (center): 
 FORM | CNTR: <𝐷!! : 𝐻𝐺!" : 𝐷!

–> | <𝑇!! : 𝐻𝐺!" : 𝑇!
–> 

3.3.2. √3 Axes of Contiguity for Class II. 
In Class II, PP alternates along its √3 axes in the order (𝑃𝑃!  – 𝐺𝐸!  – 𝑃𝑃–  – 𝐺𝐸–) = 
(𝑉𝑇!: 𝑁𝑉!: 𝑇!: 𝑇𝑅!: 𝑂𝐻–: 𝑇𝑅–: 𝑇–: 𝑁𝑉–) + (𝐶𝑂!: 𝑇𝑅!: 𝐷!: 𝐻𝐺!: 𝑇𝑂–: 𝐻𝐺–: 𝐷–: 𝑇𝑅–),  
(𝐶𝐵!: 𝑁𝑉!: 𝑇!: 𝑇𝑅!: 𝑆𝑅–: 𝑇𝑅–: 𝑇–: 𝑁𝑉–) + (𝑇𝐶!: 𝑇𝑅!: 𝐷!: 𝐻𝐺!: 𝐺𝑅–: 𝐻𝐺–: 𝐷–: 𝑇𝑅–), for 
the contracted, and the expanded forms, respectively (where the +/– designations of the 𝑁𝐸s 
are not rigorous, but indicative only). Form and counterform can be obtained by associating 
𝐺𝐸! with 𝑃𝑃!, and 𝐺𝐸– with 𝑃𝑃–, or alternatively, 𝐺𝐸! with 𝑃𝑃–, and 𝐺𝐸– with 𝑃𝑃!:  

FORM | CNTR: <𝐺𝐸!! – 𝑃𝑃!!> | <𝐺𝐸!
– – 𝑃𝑃!

–>, or, <𝐺𝐸!! – 𝑃𝑃!
–> | <𝐺𝐸!

– – 𝑃𝑃!!> 
𝑃𝑃!! and 𝑃𝑃!

– are not the same polyhedra, but complementary 𝑃𝑃 pairs with the same √1 face. 
These are shown in Fig. 10: 



 

 
 

Figure 10: Class II Form and Counterform for √3 axes showing 𝐺𝐸! (red) + 𝑃𝑃! (blue) as Form and 
𝐺𝐸–  (orange) + 𝑃𝑃!  (green). 𝐺𝐸!  in cuboctahedral array, 𝑃𝑃!  in (–ve) tetrahedral array, 𝐺𝐸–  in 
octahedral array, and 𝑃𝑃! in (+ve) tetrahedral array, all around a core 𝐺𝐸! (not shown in 𝐺𝐸– + 𝑃𝑃!). 
Top to bottom: Form and counterform are 1. Expanded 𝐷! + 𝐺𝑅! and 𝐷– + 𝑇𝐶!; 2. Expanded 𝑇! + 
𝑆𝑅! and 𝑇– + 𝐶𝐵!; 3. Contracted 𝐷! + 𝑇𝑂! and 𝐷– + 𝐶𝑂!; and 4. Contracted 𝑇! + 𝑂𝐻! and 𝐷– + 𝑉𝑇!. 
𝑇! + 𝑂𝐻! and 𝐷– + 𝑉𝑇! expand to 𝑇! + 𝑆𝑅! and 𝑇– + 𝐶𝐵!; 𝐷! + 𝑇𝑂! and 𝐷– + 𝐶𝑂! expand to 𝐷! + 
𝐺𝑅! and 𝐷– + 𝑇𝐶!. 𝑇! + 𝑂𝐻! and 𝐷– + 𝑉𝑇!. All configurations repeat indefinitely. For color, refer SI 
at http://www.rmeurant.com/its/si-4.html . 

 



 

 
Figure 11: Class I Form (below) and Counterform (above) for 𝑇! + 𝐷!  and 𝑇! + 𝐷! (left); 𝑇! + 
𝑇! and 𝐷! + 𝐷! (center); and 𝑇! + 𝐷! and 𝑇! + 𝐷! (right). Various combinations of cuboctahedral 
array of 𝑇!  (red, –ve) tetrahedral array of 𝐷!  (blue, +ve) tetrahedral array of 𝑇–  (orange), and 
octahedral array of 𝐷! (green), all around a core 𝑇! (red, not shown above), obscured at below left). 
All configurations repeat indefinitely. For color, refer SI at http://www.rmeurant.com/its/si-4.html . 

3.3.3. √3 Axes of Contiguity for Class III. 
Class III honeycombs are realized in similar manner as employed in Class II, in this case by 
actualizing the coloring of PPs, so 𝑃𝑃!=𝑃𝑃!! + 𝑃𝑃!

– and 𝑃𝑃!=𝑃𝑃!! + 𝑃𝑃!
–. Ignoring √1 𝑁𝐸s: 

FORM | CNTR: <𝑃𝑃!! – 𝑃𝑃!!> | <𝑃𝑃!
– – 𝑃𝑃!

–> or <𝑃𝑃!! – 𝑃𝑃!
–> | <𝑃𝑃!

– – 𝑃𝑃!!> 
depending on which tetrahedral array of 𝑃𝑃! is mated with which tetrahedral array of 𝑃𝑃!. 
This works without practical concern for the honeycombs that do not have 3D 𝑁𝐸s by 
neglecting the √1 𝑁𝐸s, but needs to be taken account of in the honeycombs that do. This 
presents a formal problem, as it is not possible while maintaining true 3D symmetry, short of 
the formally unsatisfactory solution of dividing each 𝑁𝐸 into two.  
 
4.   Validation of the Metaorder 
This research described in this paper applies the metaorder of the all-space-filling periodic 
polyhedral honeycombs derived by the author to explore the notion of form and counterform 
in these honeycombs. In so doing, it has validated this metaorder, while refining it and 
developing it where possible. The honeycomb metaorder reveals rigor and consistency in 
terms of the differentiation of the honeycombs into symmetry classes, and into the component 
sets of 2 pairs of 𝐺𝐸 polyhedra, 8 𝑃𝑃 polytopes, and 10 (0, 1, 2, and 3)D √1 𝑁𝐸 polytopes. 
The continuity of pattern through sequences within classes, from class to class, and the form–
counterform dialectic they exhibit further confirms that the descriptive metaorder is a true, 



 

fair, and accurate description of their order. At no stage of the investigations does a 
contradiction or formal inadequacy arise. That order necessitates the recognition of the 𝑉𝑇 as 
the null 𝑃𝑃, the inclusion of the null [𝑉𝑇!|𝑉𝑇!] honeycomb, as well as the “degenerate” 
[𝑉𝑇!|𝐶𝐵!] honeycomb and its enantiomorph, the inclusion of (0, 1, and 2)D 𝑁𝐸s as well as 
the 3D 𝑁𝐸s, and the inclusion of the 𝑂𝑃 in the 𝑁𝐸s. The inclusion of (0, 1, and 2)D 𝑁𝐸s is 
both for convenience, and to allow complete description. When these various recognitions are 
made, the patterns become clearly consistent across all of the honeycombs. 

The objection might be raised – what of the 3D chessboard consisting of alternating cubes 
and cubic spaces, where each cube is face-to-face with cubic void, and cubes are in vertex-to-
vertex contact, with cubic voids similarly arrayed? But contemplation of this arrangement 
fully subsumes it as an instance of [CB|VT], where the cubic array of cubes of 𝑅𝐶𝐿! is 
differentiated into two 𝑅𝑇𝐿!s of cubes of different color, one being the “black/solid” cube of 
𝑅𝑇𝐿!!, the other being the “white/empty” cubic void of 𝑅𝑇𝐿!

!. These alternate throughout 
space, as conceptually do the two-colored 𝑉𝑇!!s and 𝑉𝑇!

!s of 𝑅𝐶𝐿! = 𝑅𝑇!!, and 𝑅𝑇𝐿!
!. 

 
 
 
 
 
 

 
Figure 12: Left: The existent metaorder that codifies all 15 honeycombs (see Refs. [4: Fig. 5] and [6: 
Fig. 1]). Below middle: The abstracted cube of 𝑃𝑃s of the existent metaorder. Top right (color) and 
below right: The proposed metaorder of the {2,3,4} regular and semi-regular polyhedra including the 
𝑉𝑇 polytope, being the 𝑃𝑃s of the honeycombs (see also Ref. [6: Fig. 7]). Reconciling these two cubic 
schema having regard to the individual polyhedra and the honeycombs is anticipated as future work.  



 

5.   Development of the Metaorder 
Although the order of the constellation of honeycombs is now well understood and described, 
and their properties quite well characterized, the bicubic model of the 𝐺𝐸 s, 𝑃𝑃 s and 
honeycombs as previously advanced needs to be reformed, or at least further refined, and with 
consideration of the singular cubic model of the 𝑃𝑃s (which manifests a different disposition 
of the 𝑃𝑃s, see Fig. 12). This suggests the need to revise the author’s earlier metaorder of the 
{2,3,3}, {2,3,4}, and {2,3,5} regular and semi-regular polyhedra (together with its extension 
into the {2,3,6} and {2,2,4} tessellations of the plane) [10–12], in order to accommodate the 
null polytope and 𝑃𝑃 𝑉𝑇, and to incorporate the corresponding 𝑉𝑇 in each class of that earlier 
metaorder, together with integrating the various implications. Despite this, the central 
intimation remains – that the metaorder of these beautiful honeycombs and their sophisticated 
regularity ought to be reflected in a key configuration, a schematic that adequately represents 
their formal structure – for which the bicubic model is but a pale comparison. It is anticipated 
that further work will incorporate the transformations between the eight 𝑃𝑃s, and also the 
four 𝐺𝐸s, and the deep formal analogy with the sequences and sequence clusters of the 
honeycombs, the patterns of separation and morphing, and concomitant projection and 
expansion of neutral elements, whether of polyhedra, or polygonal faces, in both 3D and 2D. 
 
6.   Conclusion 
This paper describes the relationships that characterize the fundamental structure of these 
honeycombs, individually, in sequence, and as various instances of the same metaorder, in 
application to the phenomenon of form and counterform. The rigor and consistency found 
throughout this application serve to validate the metaorder. In a fundamental sense, this 
metaorder of the honeycombs embodies the inherent structure of empirical 3-D space, as do 
the regular and semi-regular polyhedra and their interrelationships. These descriptive 
explorations in experimental geometry serve to characterize the honeycombs and their 
metaorder, and allow these essential configurations to become conceivable, imageable, and 
practical. While the essential motivation of this research remains the exploration and mastery 
of the timeless formal nature of the honeycomb arrays, practical application also offers 
potential. For example, form and counterform of the honeycombs enable the facile structuring 
of interpenetrating but distinct spaces that could be engineered to provide controllable porous 
membrane surfaces that allow two domains to interact with one another through controllable 
high surface area interfaces. Through the metaorder, the geometry of the honeycombs and 
their sequences and sequence clusters becomes accessible to a wide range of diverse 
applications, such as tensile arrays in the sea and in Space stressed by pneumatic envelope; 
deployable folding structures, such as antennae and sensor networks; chemical compounds of 
hybrid composites; new nanoscale-engineered materials; metamaterials; filters; and artificial 
bone tissue scaffolding. Finally, in a world that appears beset by political stride, 
environmental pollution, global warming, and even the denial or would be relativization of 
truth, contemplation of the metaorder reveals the innate integrity of the space within which 
we exist, and mediates a sense of perfection through timeless harmony that can serve to 
ameliorate the frustrations and limitations of our fragile existence. 

*** 
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